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Vectors and quaternions are quite different mathematical quantities because they have different
symmetry properties. Gibbs and Heaviside created their vector system starting from the quaternion
system invented by Hamilton. They identified a pure quaternion as a vector and introduced some
changes in the product of two vectors defined by Hamilton without realizing that the scalar product
and vector product cannot be interpreted as the scalar part and vector part of the quaternion product.
Toward the end of the 19th century some authors realized that there was an incompatibility between
the vector and quaternion formalisms, but the central problem was not altogether clear. This paper
will show that the main difficulty arose from Hamilton’s contradictory usd,gf andk both as
versors and as vectors. @02 American Association of Physics Teachers.
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[. INTRODUCTION aB=[—(Xu+yv+zw)]+[i(yw—2zv)+j(zu—Xxw)

The development of electromagnetic theory in the 19th +k(xv—yu)]=Sap+Vap. (©)
century brought with it the concept of field, the new vector

quantities related with it, and the requirement of a vector, quaternion theory the complete product of two pure

analysis to deal with so many vector quantities in a mor mions i m £ tw rts. Th lar
practical way In the last decade of the 19th century thereeiuft(exufyz +S z(i/f/)) ggi?:inc; ; noeg:tit\?e si gen 522(? th?\rg ctor
was a debate concerning the best mathematical formalism to - ' ) U
represent the new vector quantities in three-dimension art,Va_B—l(yW—ZU)ﬂ(zu—xw)+k(XU—yu), IS a pure
space. On one side were Peter G. Tait, Cargil Knott, andlUaternion. . . . .
Alexander MacFarlane, who defended the use of quaternion Quateérnions were intensively studied and applied to phys-

algebra as the best tool to deal with the new vector quanti'—cs during the second half of the 19th century and early 20th

ties. On the other side were Willard Gibbs and Oliver Heavi-Cemury'5 Nowadays they are studied by mathematicians as

side, who defended the use of vector analysis. Both group@n €xample of an interesting noncommutative algebra and

were influenced by James Clerk Maxwell, who used the coPPYSiCists seldom use them. Instead of quaternions they pre-
ordinate calculus and the quaternion calculus inTmesatise fer the matrix form of spinor calculus and the vector

6
on Electricity and Magnetisppublished in 1873.0ne of the ter\l}sobt calc_ulu;sh g onal save th fial
most important aspects that makes this discussion interestin% ectors (in three-dimensional spacéave three spatia
mponentgX, Y, 2 and can be represented s Xi+ Y j

is the fact that all debaters were important physicists with® g i ' M )
mathematical interesfé The main question was whether TZK. It is possible to define addition and subtraction for
one should use quaternions or vectors to represent the ele¢ectors. There are two types of vector products that are
tromagnetic quantities. analogous to the scalar and vector parts of the quaternion
A quaternion is a special mathematical entity containingProduct. The division operation is not defined for vectors.
four components. William Hamilton conceived it in 1843. It In spite of the recognition by some authors that a pure
was born as a generalization of complex numbers g  guaternion is different from a vect6if is common practice
+bi). A quaternion can be written ag=a+ bi+cj+zk, to interpret a pure quaternio_n as a vectoRh Kuipers, for
wherei, j, k are imaginary units that obey the following instance, defined a quaternion as “the sum of a scalar and a
rules: Y vector.”® He regards it as obvious that we may identify a
vector as a pure quaternion:

i2=j2=Kk2=—1, (1) How can a quaternion, which lives iR*, operate
on a vector, which lives ilR®? There is an answer
N B o ] ) o ) to this question, which may seem obvious to some,
ij=k, ji==k jk=i, kj=-i, ki=j, ik=-]j. and that is: A vectov e R® can simply be treated as
2 though it were a quaternioge R* whose real part
is zero®
A quaterniong=a-bi-+cj+zk contains a scalar pafd)  of course, there is a one-to-one correspondence between the
and a vector parthi+cj+zK). A quaternion of the form  gset of vectors and that of pure quaternions, because vectors
gq=bi+cj+zkis called a “pure quaternion” and looks like and pure quaternions are both triplets. However, not every
an ordinary vector. But as will be shown, this similarity is triplet can be regarded as a vector, because a vector is a
superficial. triplet with somespecific properties
The quaternion or complete product of two pure quater- The notation for vectors and quaternions also helps to in-
nions e=(ix+jy+kz and g=(iu+jv+kw) is obtained crease the confusion. In both cases one empiojyxk, and
using the above rules for multiplication ofj, k: this notation conjures up an identification between pure
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vectorr in such a way thaf\(r)= £ A(—r), thenAis either

a scalan+) or a pseudoscaldr-) depending on the sign. It

is possible to represent an axial vectr ai+bj+ck, with

i, ], andk as polar vectors, i, b, care pseudoscalars. In this
caseC is an axial vector, because it is a sum of pseudoscalars
(a, b, @ multiplied by polar vectorsi, j, k).}?> The assump-
tion thati, j, k are polar vectors and, b, care pseudoscalars

in an axial vector is implicitly presupposed in the usual vec-
tor algebra used by physicists.

Are there two types of quaternions, as there are two types
of vectors? The answer is no. Quaternions are defined in
Fig._ 1. The components of a polar vectdrin which thez component  gch a way that all arithmetic operations involving two
vanishes. The vectdt is an axial vector. quaternions produce another quaternion with the same prop-
erties as the initial ones. How can that be? Let us consider a

. L ) simple case.
quaternions and vectors. However, for vectarg,k are unit Equation(3) shows that the product of two pure quater-
vectors in three perpendicular directions. In the case Ofjgnsis a quaternion. A pure quaternion cannot be equivalent
quaternionsi, j, k are imaginary units. to a polar vector. If pure quaternions were equivalent to polar

Altmann has shown, from a modern point of view, hOW ecors, the vector paita of a quaternion product would
dangerous itis to identify uncritically a pure quaternion with o o iyalent to an axial vector, and consequently a different
a vector.” A pure quaternion and a vector do not have theyin of mathematical entity than a pure quaternion—and it
same symmetry proprieties. . would be impossible to build a closed quaternion algebra.

Historically, vector algebra arose from quaternion algebrac,, the pure quaternion be equivalent to an axial vector? It
How did it happen that they are such different entities, a”(fan, provided that, j, andk correspond taxial vectors. In

why 'do they I.OOk so similar in SOme respects? The chief "’.‘i his way, a pure quaternion is an axial vector, and the vector
of this paper is to analyze the origin of this mlsunderstandlnq)art of the product of two quaternions is also an axial vector.

from a historical point of view. Hence, the symmetry properties of pure quaternions are dif-
ferent from those of polar vectors and a quaternion is not

Il. THE NATURE AND SYMMETRY OF VECTORS equivalent to a polar vector plus a scalar.

AND PURE QUATERNIONS The analysis described above shows that it is incorrect to

identify a pure quaternion as a vector as some present day
As was pointed out in Sec. |, pure quaternions and vectorauthors do. Although quaternions and vectors are completely
have different symmetry proprieties. The pure quaternion bedifferent mathematical objects, vectors originated from
haves with respect to coordinate transformations like amuaternions via a change of meaning of the pure quaternion
axial vector while the ordinary vector behaves agpalar  and of the symbols, j, k. When developing the vector sys-
vector. tem used nowadays by physicists, Gibbs and Heaviside in-
By multiplying two vectors it is possible to generate new terpreted the pure quaternion as a polar vector in Euclidean
objects. For example, the vector product of two polar vectorspace and the imaginary unitg, k as unit vectors. We now
is an axial vectot! To understand this point, let us analyze areturn to the 19th century to examine in more detail the
simple case of the vector produ€t=AXB in whichA, and  meaning of the symbols j, k in the quaternion system and
B, vanish. According to the usual rule for the vector product,in vector algebra.
in this caseC has only one componeng,=A,B,—A,B, .
Let us consider a reflection plameparallel to thexzplane
(Fig. 1). The component#\, and B, are symmetrical with lll. HAMILTON'S ORIGINAL VIEWS ON
regard to parallel reflection im, that is,cA,=A, andoB, = QUATERNIONS

=B, . But the componentd, and B, are antisymmetrical . . . . .
X b y y y The invention of quaternions is related to Hamilton’s stud-

with regard to a perpendicular reflection i that is, oA, ies on complex numbers, their geometric representation, and
=—Ay and 0B, =—B, . Therefore,cC=a(ABy=A/By)  sqsqciated ideds Wessel had shown that it was possible to
=(=AB,+AB,)=—C, and hence the vectd behaves onresent a complex numbera+bi by means of an in-
under reflection in the parallel planrelike an axial yecto_r. clined line on a plane surfad8.Hence, points in a two-
When one represents a polar vectr as Ad+Ayj  dimensional space correspond to complex numbers, where
+AZK, the symbols, j, andk are understood to be unit polar the real part represents one direction and the imaginary part
vectors and the components Af that is,A,, Ay, andA;,  represents a perpendicular direction.
are scalars. Now, if one attempts to represent the vector prod- Hamilton thought that the analogous situation in three di-
uct of two polar vectorgor any other axial vectoC) as  mensions would be the representation of a point in siaice
C,i+C,j+CJxk, the symbols, j, andk cannot be understood a straight line in space passing through the ojibina triplet
as unitpolar vectors, because the addition of polar vectorsof numbers such ag+bi+cj. In this casej would corre-
produces polar vectors. It would be possible to regaid  spond to a third direction perpendicular to the first two di-
andk asaxial vectors. In that case, however, it would seemrections. Hamilton attempted to build an algebraic system
impossible, at a first sight, to represent a polar ve@tach  embodying those ideas, but for several years he was unsuc-
as position asr=ai+bj+ck. cessful. So, Hamilton gave up the attempt to build an algebra
There is a way out of the problem, however. The answer i®f triplets, and introduced a third imaginary uRjtthus cre-
in a, b, andc. If a real numbe is a function of the position ating the quaternions.

959 Am. J. Phys., Vol. 70, No. 9, September 2002 C. C. Silva and R. de Andrade Martins 959



Fig. 2. The rotator character @fj, k.

When Hamilton was studying the tripleta+bi+cj, its
real part was interpreted as corresponding to one direction i
space, and the two imaginary parts were regarded as corr

might be interpreted as something that produces rotations,
instead of something that corresponds to a straight line in
space. Hamilton soon explored this interpretation. He used
the word “versor” (meaning “rotator” and defined the con-
cept of “perpendicular versor” as a quaternion which is able
to rotate a vector ofr/2 around a perpendicular directibh.
If we consider three perpendicular axes, it is possible to as-
sociate a versor to each of them, and it will be able to rotate
any of the other two axes so as to coincide with the third one.
Tait was the next mathematician who studied quaternions.
He developed the quaternion analysis as a tool for physical
research. Tait was a friend of Maxwell at Cambridge, and
Maxwell’'s interest in quaternions is due to his relationship
with him. He also associated versors with rotations and at-
E_ibuted to them the same meaning as Hamilton did. How-

sponding to the other two perpendicular directions in three€Ver: Tait changed the designatior;sand replaced “perpendicu-
dimensional space. Now, after introducing a third imaginary@r versor” by “quadrantal versor.™ A quadrgntal versor is
unit k, Hamilton changed his interpretation. In a quaternionan operator that producesm2 counterclockwise rotation of

g=a+bi+cj+dk, the real part has no geometrical mean-
ing, and the three imaginary terms correspond to three pe
pendicular directions.

At this point one may wonder why Hamilton did not drop

a vector without changing its length.

r- Let us suppose a system of three unitary and perpendicular
vectorsl, J, K. The operator that changésinto K is the
quadrantal versor, and the axis of lies in the same direc-

the scalar part of the quaternion. It seems that he could hawgon asl. ThusK=iJ or i=K/J. Analogously, we have

just retained the vector part of the quaternion to represent

spatial quantity, as was done when vector algebra was cre-

ated a few decades later. However, he did not take this ste
and the reason can be found in the context of his researc

2K andJ=kl [see Fig. 2)]. Furthermore, there exist the

Hwerse transformations=J/K=K/J=i or —J=iK, and
=]l and —1=kJ. From those relations we haveJ=iK

He was looking for a generalization of complex numbers to=i(iJ)=i%J and thereforei®= —1. In the same way, we

represent geometrical quantities in Euclidian space. Theresbtain the relation§?=k?= —

1.

fore, the scalar part of a quaternion was essential to preserve As shown abovel, J, K andi, j, k have different mean-
the “C0mp|eX number” character of the new Ob]eCt. BeSldeSings_ |, J, K are unitary vectors an'd j, k are Operators that

that, if an imaginary triplet* =ai+bj+ck is multiplied by
another imaginary triplet, the product will contain real terms

produce rotations. According to the later nomenclatijiek
are axial vectors, antl J, K are polar vectort? Notwith-

and hence will not be an imaginary triplet. Therefore, if one tanding this difference, Tait used those concepts

requires the product of two quantities to be of the same kin
as those quantities, it is impossible to build a suitable algebr
with imaginary triplets.

IV. VERSORS AND UNITARY VECTORS IN THE
SYSTEM OF QUATERNIONS

For complex numbers, performs a double role: it could
be regarded as representing a directijparpendicular to the
real axig, or it could be regarded as 2 counterclockwise
rotation.

Let us consider the complex number a+bi that repre-
sents a straight line on a plane with a real comporent
and an imaginary componeb{see Fig. 2a)]. If we multiply
r by i, we obtainr’=ir=—b+ai. If we multiply r’' again
by i, we obtainr”=ir’'=—a—ib=—r. The two multiplica-
tions byi producer”=iir=—r, which is compatible with
i=—1. The multiplication of a vector (represented by a
complex numberby i andi? produces a counterclockwise
rotation of #/2 andr, respectively.

Because Hamilton regarded quaternions as an extension
complex numbers for four dimensions, he used the geometr
cal representation of a complex number on the plan@ef.
16) to explain the meaning af= — 1, wherei is the imagi-

(?nterchangeablﬁf.’

a
Now the meanings we have assignedi,ty k are

quite independent of, and not inconsistent with,
those assigned 10 J, K. And it is superfluous to use
two sets of characters when one will suffice. Hence
it appears that, j, k may be substituted far, J, K;

in other words,a unit-vector when employed as a
factor may be considered as a quadrantal versor
whose plane is perpendicular to the vectdhis is
one of the main elements of the singular simplicity
of the quaternion calculufs.

This indifferent use of, |, k for I, J, K appears explicitly
when Tait represented a quaternion using its coordinates:

Because any vector whatever may be represented by
xi+yj+zk, wherex, y, zare numbergor scalarg,
andi, j, k may be any three non-coplanar vectors—
though they are usually understood as representing
a rectangular system of unit-vectors—and because
any scalar may be denoted ty we may write, for

any quaterniong, the expressionq=w+Xi+Yyj
+zk.??

of
i-

nary unit. The other new imaginary units were also regarded Althoughi, j, k andl, J, K are related to the same set of

as corresponding ta/2 rotations, but around different axes.
Now, if the vector part of a quaternion contains imaginary

perpendicular axes, they are mathematical entities of differ-
ent types, and it is inappropriate to use the same symbol to

units that represent rotations, this part of the quaterniomepresent different entities.

960 Am. J. Phys., Vol. 70, No. 9, September 2002

C. C. Silva and R. de Andrade Martins 960



V. VERSORS AND UNITARY VECTORS IN VECTOR introduced a “direct product’a- 8 of two vectorsa and B
ALGEBRA that was similar to the scalar part of the complete product
defined by Hamilton, and a “skew product#Xxpg corre-
In the early 19th century, before the development ofsponding to the vector part of the quaternion product. The
quaternions, when physicists wanted to refer to the compodirect and skew products are related to the complete quater-
nents of magnitudes such as force and velocity, they had tjon product asz- 8= — Sa8 and ax 8=VaB. Note that

use different symbols for each component and to work outhe direct product is the scalar part of Hamilton’s product
the mathematical equations using those symbols. There Wgsin the opposite sign.

no symbolic representation such Bsxi+yj+zk Max- Starting from those definitions, the products of unitary
well used quaternions in his treatise on electromagnetism, vectorsi, j, k were defined & i-i=j-j=k-k=1; i-j=]
but all relevant physical magnitudes were either pure quater-j=k.j=j.k=j.-k=k-j=0; iXi=jxj=kxk=0; iX]
nions or scalars. Hence, Maxwell used a simplified version_. jxj=—k; jxk=i; kxj=—i; kxi=j; ixk=—]

of Hamilton's (and Tait'§ theory of quaternions. =k. Note that in quaternion algebra there is only one kind of
The vector algebra used nowadays was developed b

. 9 . . M¥roduct betweer, j, k.
Gibbs and Heaviside as a tool to deal with vectors in three- The direct product obeys the commutative rule, that is,

dimensional space. They both had studied quaternions 3% B=B.a but the skew product does not because g

used by Maxwell in his electromagnetic theory and at-_ " 55 Th : .
. =— . The complete product in quaternion system was
tempted to frame a new system that would be easier thaﬁot fon?mutative algo P g y

H 1 24 .
Hamilton's™ The complete quaternion was never used in o oroqyct of two vectors in the quaternion system obeys
physical applications, and for that reason Gibbs and Heavig,s agsociative law. On the other hand, this property is not
side chose to work with tripletpure quaterniongepresent- 4jiq i the Gibbs—Heaviside system. The associative prop-
|ng”d|rected magnlt_udes. They kept Ham'ltons term “vec- erty is preserved in the quaternion system because the qua-
tor” to represent this part of the quaternion. Instead of thedrantal versors obey the multiplication ruléé=j2=k>2

whole quaternion produdiwhich has a scalar and a vector — 1T thi ider th ltiolicati
pard, they defined two different types of product between . 0 see Inis, we may consider the multipiication
two vectors (the “scalar’—or “direct product” and the |(|+_J_)J, taking into account the multiplication ruleg=k

“vector’—or “skew product”). =—ji, jk=i=—kj andki=j=—ik:

Gibbs wrote a vector asw=xi+yj+zk wherei, |, k i(i+j)j=(ii+ij)j=(i2+k)j=i2j+kj=i2j—i=—j—i,
compose a normal system of unit vectors, that is, three (4)
mutually perpendicular unit vectors. Their directions were. o o o
chosen so that is on the side of thé—j plane from whicha (i +Di=i(ij+jj)=i(k+]9)=ik+ij*=—j+ij*=—]—i.
rotation fromi to j (through one right angjeappears (5)
counterclockwisé® In the case of the scalar product in the vector system,

The meaning of the symbois j, k in Gibbs’s system is wherei, j, k are unitary vector, we have
quite different from the original meaning in the quaternion P .
system, although the symbols employed to represent them |~(i+1)-J=(i-i+i-})-j=(1+0)-] (6)
are the same. For Gibbis,j, k only represented unit vectors and
and are never associated with the concept of rotation. Itis . . . . . . . .
possible to produce rotations in vector algebra, but thisis a (1 F1)-1=1-(-]+]-])=i-(1+0). ()
property of the skew product, not a fundamental property ofn both cases, the last operation represented by the dot sym-
i, J, k. The operationi X j=k means that X applied toj ro-  bol is impossible because the scalar product is an operation
tates it by#/2 around the axis resulting ink. Notice that involving two vectors, and not a vector and a number.
according to the analysis presented in Sec. Il, the vector Inthe case of the vector product the associative property is
product of two polar vectors is an axial vector, and thereforenot valid either, as exemplified below,
if i, j, k are polar vectorsk cannot be the product ofXj. N i L L
However, Gibbs did not use any distinction equivalent to this XA X]=xirix)xj=0+k)xj==i, (8
one. . ' iIX(+j)Xj=ix(ixXj+jXj)=ix(k+0)=j. 9)
Heaviside had an important role in the development and When Gibbs identified the scalar part of the complete

use of vector algebra. In his earlier work he explicitly used d f th N d ad d th o
the same ideas of the quaternion system, but in his later worR"0dUct of the quaternion system and adopted the positive

he denied any influence of quaternions on his vector systen?!9": he did not realize the implicit significance of this
change. In fact, the sign is related to intrinsic proprieties of

the product such as the associative rule and the meaning of
VI. THE PRODUCTS OF TWO VECTORS the symbols, j, k as explained in Secs. IV and V.
In the same way as Gibbs, Heavisilassociated the sym-
olsi, j, k with “rectangular vectors withunit lengths paral-
lel to x, y, z.” 28 Following Hamilton, Heaviside also inter-

As was mentioned above, the creation of vector algebr
led to the introduction of new types of products. The study o

the difference between the meaning and proprieties of thﬁretedi, i, k as versors that produce rotations bj2 and

operations called “product” in the quaternion system and in, i, i< interpretation he explained the multiplication rules
the vector system shows that the identification of a PUr€2_ 22 1 andii—k=—ii etc
guaternion as a vector is quite problematic because they have J J I '
different multiplication proprieties. The meaning of the rulei§ =k, etc., may be inter-

In 1881 Gibbs introduced the notation used up to the preted thusj signifying a unit vector parallel to v,
present time. He dropped the complete product and main- andk another parallel to z, let be a unit taken to

tained both the scalar part and vector part independently. He  mean, not a unit vector parallel to x, but a rotation
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through an angle of 90° about x as an axis. Then

becausqg rotates 90° about de x-axis is turned to

coincide with k, we haveij=k. (...) As for the

squares, we may verifi= — 1 thus: Rotat¢ a sec-

ond time through 90° about the axis of x. The first Fig. 3. Woldemar Voigt's representation of a polar and an axial ve(stee
rotation broughf into coincidence wittk, the sec- Ref. 34.

ond brings it to the same line as at first, but pointing

the other way>®

In this same paragraph, Heaviside criticized the confusioraxial vectors, and a straight arrow to identify polar vectrs:
brought about by using the same symbol to represent line & .
and rotations because “this double use of the same symbo%_and B. Th's_ propos_al was never accepted, however, and
makes it difficult to establish the elementary parts of quatertiS day physicists still use the same symbol to represent
nions in an intelligible manner.” However, he did not intro- those d|ffer.e.nt mathemaﬂcal entities.
duce different symbols to represent those concepts. The traditional notation of arrows to represent the polar
In 1885 Heaviside changed his mind and began to ado nd axial _vec_tors_makes |t.d|ff|cult fo.r students to realize that
an approach that conflicted with the quaternion theory. H e electric field is a_physmal quantity with polar symmetry
criticized the negative sign of the scalar part of the product | whereas the magnetic field has axial symmetry. This tradition

Hamilton's system because using this sign meant that it wag692" in the late 19th century with the invention of actual
difficult to pass from the Cartesian formulas to vector formu—vector system by Gibbs and Heaviside from a quatemion
las. Therefore he defined a scalar product without the negas—yStem'

tive sign to avoid this difficulty® Notice that he was not

gjtfsmpting to solve the mixing of unitary vectors and ver-y,; coNCLUSION

Now, wheni, |, k are regarded as rotations, this interpre-  An analysis of symmetry properties shows that it is wrong
tation leads naturally to?=j?=k?= — 1. On the other hand, to identify a pure quaternion as a comm@molar vector, as
wheni, j, k are regarded as unit vectors, one is ledito Gibbs and Heaviside did when they developed their vector
=j2=k?=+1. Therefore, a change from minus to plus in algebra and as some authors do nowadays.
the sign of the scalar product corresponds to a shift of inter- A quaternionq is a mathematical object formed by four
pretation ofi, j, k from versors to unit vectors. numbers which can be written gs=a+bi+cj+zk Hamil-

In 1892 Heaviside emphasized the difference between veton arrived at quaternions starting from the analysis of com-
sor and unitary vector and criticized the quaternionists beplex numbers, so thatj, k are imaginary units that obey the
cause the unit vectors were identified with versors, with theulesi?=j2=k?= — 1. Hamilton interpreted a quaternion as
consequence that the square of every vector should be raade up of a scalar plus a “vector” part.
negative scalat* In accordance with the geometrical interpretation of com-

The confusion between versors and unit vectors was alsplex numbers, Hamilton interpretedj, k as “versors” that
discussed by MacFarlane during the controversy concerningroduce arm/2 rotation when applied to another vector, but he
vectors versus quaternions in the 18808lacFarlane’s atti-  also interpreted, j, k as unit vectors, that is, the same mean-
tude was intermediate—between the position of the defendng that was used afterwards in Gibbs—Heaviside vector al-
ers of the Gibbs—Heaviside system and that of thegebra. He gave the name “pure quaternion” or “vector” to a
quaternionists> He supported the use of the complete quaternion without a scalar part, of the forq=bi+cj
quaternionic product of two vectors, but he accepted that-zk The pure quaternion is a vector in the current sense
the scalar part of this product should have a positive sign(that is, a polar vectoronly if i, j, k are regarded as unit
According to MacFarlane the equatiph=i was a conven- polar vectors, but not if they are interpreted as versors.
tion that should be interpreted in a geometrical way, but he Hamilton did not drop the scalar part of the quaternion
did not accept that it implied the negative sign of the scalabecause pure quaternions did not fulfill the properties he
product. wanted to ascribe to his system. The scalar part of a quater-

MacFarlane credited the controversy concerning the sigmion is essential to keep up the “complex number” character
of the scalar product to the conceptual mixture done byof the new object and to ensure that the product of two
Hamilton and Tait. He made clear that the negative sigrfuaternions is also a quaternion.
came from the use of the same symbol to represent both a Gibbs and Heaviside developed the contemporary vector
quadrantal versor and a unitary vector. His view was thaglgebra inR? starting from the quaternion system, although
different symbols should be used to represent those differerthey later denied any influence of the quaternions over their
entities. system. They interpreted a pure quaternion as a common

It is also necessary to stress the difference between a ve(polan vector and introduced new definitions of the product
tor quantity and its graphical representation. In order to repef two vectors by abandoning the complete quaternion prod-
resent both polar and axial vector quantities graphically, weuct and replacing it by two separate types of products, the
usually use arrows, that is, we use the same symbol to regscalar product and vector product. Besides, they changed the
resent two different things. sign of the scalar product, because they interprgtgck as

Several years were to elapse before the need for differentnit vectors, not as versors.
symbols was met. Woldemar Voigt proposed in 1910 the use A pure quaternion is not equivalent to a polar vectoRh
of the symbols represented in Fig. 3 in order to represenbecause, j, k have different meanings for pure quaternion
polar and axial vector& and for a vector. Their products obey different rules and they

In 1912 Paul Langevin proposed a bent arrow to identifyexhibit different symmetry proprieties. Within the quaternion
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theory, the units, j, k are versorgthat is, axial vectopsand °Reference 8, p. 114.
so is the pure quaternion. But the common vector in Euclid-’Simon L. Altmann,Rotations, Quaternions, and Double Groujaren-
ian space is a polar vector. ,don, Oxford, 198§ p. 9.

Besides the differences in symmetry proprieties of a purqzﬁi‘i:ﬁ:‘é‘z 18' E' 23'5
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