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Vectors and quaternions are quite different mathematical quantities because they have different
symmetry properties. Gibbs and Heaviside created their vector system starting from the quaternion
system invented by Hamilton. They identified a pure quaternion as a vector and introduced some
changes in the product of two vectors defined by Hamilton without realizing that the scalar product
and vector product cannot be interpreted as the scalar part and vector part of the quaternion product.
Toward the end of the 19th century some authors realized that there was an incompatibility between
the vector and quaternion formalisms, but the central problem was not altogether clear. This paper
will show that the main difficulty arose from Hamilton’s contradictory use ofi, j, andk both as
versors and as vectors. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

The development of electromagnetic theory in the 1
century brought with it the concept of field, the new vec
quantities related with it, and the requirement of a vec
analysis to deal with so many vector quantities in a m
practical way.1 In the last decade of the 19th century the
was a debate concerning the best mathematical formalis
represent the new vector quantities in three-dimensio
space. On one side were Peter G. Tait, Cargil Knott,
Alexander MacFarlane, who defended the use of quatern
algebra as the best tool to deal with the new vector qua
ties. On the other side were Willard Gibbs and Oliver Hea
side, who defended the use of vector analysis. Both gro
were influenced by James Clerk Maxwell, who used the
ordinate calculus and the quaternion calculus in hisTreatise
on Electricity and Magnetism, published in 1873.2 One of the
most important aspects that makes this discussion intere
is the fact that all debaters were important physicists w
mathematical interests.3,4 The main question was whethe
one should use quaternions or vectors to represent the
tromagnetic quantities.

A quaternion is a special mathematical entity contain
four components. William Hamilton conceived it in 1843.
was born as a generalization of complex numbers (z5a
1bi). A quaternion can be written asq5a1bi1c j1zk,
where i, j, k are imaginary units that obey the followin
rules:

i 25 j 25k2521, ~1!

i j 5k, j i 52k, jk5 i , k j52 i , ki5 j , ik52 j .
~2!

A quaternionq5a1bi1c j1zk contains a scalar part~a!
and a vector part (bi1c j1zk). A quaternion of the form
q5bi1c j1zk is called a ‘‘pure quaternion’’ and looks like
an ordinary vector. But as will be shown, this similarity
superficial.

The quaternion or complete product of two pure quat
nions a5( ix1 jy1kz) and b5( iu1 j v1kw) is obtained
using the above rules for multiplication ofi, j, k:
958 Am. J. Phys.70 ~9!, September 2002 http://ojps.aip.or
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ab5@2~xu1yv1zw!#1@ i ~yw2zv !1 j ~zu2xw!

1k~xv2yu!#5Sab1Vab. ~3!

In quaternion theory the complete product of two pu
quaternions is composed of two parts. The scalar part,Sab
52(xu1yv1zw), contains a negative sign, and the vec
part,Vab5 i (yw2zv)1 j (zu2xw)1k(xv2yu), is a pure
quaternion.

Quaternions were intensively studied and applied to ph
ics during the second half of the 19th century and early 2
century.5 Nowadays they are studied by mathematicians
an example of an interesting noncommutative algebra
physicists seldom use them. Instead of quaternions they
fer the matrix form of spinor calculus and the vector~or
tensor! calculus.6

Vectors ~in three-dimensional space! have three spatia
components~X, Y, Z! and can be represented asV5Xi1Y j
1Zk. It is possible to define addition and subtraction f
vectors. There are two types of vector products that
analogous to the scalar and vector parts of the quater
product. The division operation is not defined for vectors

In spite of the recognition by some authors that a p
quaternion is different from a vector,7 it is common practice
to interpret a pure quaternion as a vector inR3. Kuipers, for
instance, defined a quaternion as ‘‘the sum of a scalar an
vector.’’ 8 He regards it as obvious that we may identify
vector as a pure quaternion:

How can a quaternion, which lives inR4, operate
on a vector, which lives inR3? There is an answer
to this question, which may seem obvious to some,
and that is: A vectorvPR3 can simply be treated as
though it were a quaternionqPR4 whose real part
is zero.9

Of course, there is a one-to-one correspondence betwee
set of vectors and that of pure quaternions, because vec
and pure quaternions are both triplets. However, not ev
triplet can be regarded as a vector, because a vector
triplet with somespecific properties.

The notation for vectors and quaternions also helps to
crease the confusion. In both cases one employsi, j, k, and
this notation conjures up an identification between p
958g/ajp/ © 2002 American Association of Physics Teachers
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quaternions and vectors. However, for vectors,i, j, k are unit
vectors in three perpendicular directions. In the case
quaternions,i, j, k are imaginary units.

Altmann has shown, from a modern point of view, ho
dangerous it is to identify uncritically a pure quaternion w
a vector.10 A pure quaternion and a vector do not have t
same symmetry proprieties.

Historically, vector algebra arose from quaternion algeb
How did it happen that they are such different entities, a
why do they look so similar in some respects? The chief a
of this paper is to analyze the origin of this misunderstand
from a historical point of view.

II. THE NATURE AND SYMMETRY OF VECTORS
AND PURE QUATERNIONS

As was pointed out in Sec. I, pure quaternions and vec
have different symmetry proprieties. The pure quaternion
haves with respect to coordinate transformations like
axial vector, while the ordinary vector behaves as apolar
vector.

By multiplying two vectors it is possible to generate ne
objects. For example, the vector product of two polar vect
is an axial vector.11 To understand this point, let us analyze
simple case of the vector productC5A3B in which Az and
Bz vanish. According to the usual rule for the vector produ
in this caseC has only one component,Cz5AxBy2AyBx .

Let us consider a reflection planes parallel to thexzplane
~Fig. 1!. The componentsAx and Bx are symmetrical with
regard to parallel reflection ins, that is,sAx5Ax andsBx

5Bx . But the componentsAy and By are antisymmetrica
with regard to a perpendicular reflection ins, that is,sAy

52Ay and sBy52By . Therefore,sC5s(AxBy2AyBx)
5(2AxBy1AyBx)52C, and hence the vectorC behaves
under reflection in the parallel planes like an axial vector.

When one represents a polar vectorA as Axi 1Ayj
1Azk, the symbolsi, j, andk are understood to be unit pola
vectors and the components ofA, that is,Ax , Ay , andAz ,
are scalars. Now, if one attempts to represent the vector p
uct of two polar vectors~or any other axial vectorC! as
Cxi 1Cyj 1Czk, the symbolsi, j, andk cannot be understoo
as unitpolar vectors, because the addition of polar vecto
produces polar vectors. It would be possible to regardi, j,
andk asaxial vectors. In that case, however, it would see
impossible, at a first sight, to represent a polar vector~such
as position! as r5ai1b j1ck.

There is a way out of the problem, however. The answe
in a, b, andc. If a real numberA is a function of the position

Fig. 1. The components of a polar vectorA in which the z component
vanishes. The vectorC is an axial vector.
959 Am. J. Phys., Vol. 70, No. 9, September 2002
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vectorr in such a way thatA(r )56A(2r ), thenA is either
a scalar~1! or a pseudoscalar~2! depending on the sign. I
is possible to represent an axial vectorC5ai1b j1ck, with
i, j, andk as polar vectors, ifa, b, care pseudoscalars. In thi
caseC is an axial vector, because it is a sum of pseudosca
~a, b, c! multiplied by polar vectors~i, j, k!.12 The assump-
tion thati, j, k are polar vectors anda, b, care pseudoscalar
in an axial vector is implicitly presupposed in the usual ve
tor algebra used by physicists.

Are there two types of quaternions, as there are two ty
of vectors? The answer is no. Quaternions are defined
such a way that all arithmetic operations involving tw
quaternions produce another quaternion with the same p
erties as the initial ones. How can that be? Let us consid
simple case.

Equation~3! shows that the product of two pure quate
nions is a quaternion. A pure quaternion cannot be equiva
to a polar vector. If pure quaternions were equivalent to po
vectors, the vector partVab of a quaternion product would
be equivalent to an axial vector, and consequently a differ
kind of mathematical entity than a pure quaternion—and
would be impossible to build a closed quaternion algeb
Can the pure quaternion be equivalent to an axial vector
can, provided thati, j, andk correspond toaxial vectors. In
this way, a pure quaternion is an axial vector, and the ve
part of the product of two quaternions is also an axial vec
Hence, the symmetry properties of pure quaternions are
ferent from those of polar vectors and a quaternion is
equivalent to a polar vector plus a scalar.

The analysis described above shows that it is incorrec
identify a pure quaternion as a vector as some present
authors do. Although quaternions and vectors are comple
different mathematical objects, vectors originated fro
quaternions via a change of meaning of the pure quatern
and of the symbolsi, j, k. When developing the vector sys
tem used nowadays by physicists, Gibbs and Heaviside
terpreted the pure quaternion as a polar vector in Euclid
space and the imaginary unitsi, j, k as unit vectors. We now
return to the 19th century to examine in more detail t
meaning of the symbolsi, j, k in the quaternion system an
in vector algebra.

III. HAMILTON’S ORIGINAL VIEWS ON
QUATERNIONS

The invention of quaternions is related to Hamilton’s stu
ies on complex numbers, their geometric representation,
associated ideas.13 Wessel had shown that it was possible
represent a complex numberz5a1bi by means of an in-
clined line on a plane surface.14 Hence, points in a two-
dimensional space correspond to complex numbers, wh
the real part represents one direction and the imaginary
represents a perpendicular direction.

Hamilton thought that the analogous situation in three
mensions would be the representation of a point in space~or
a straight line in space passing through the origin! by a triplet
of numbers such asa1bi1c j . In this case,j would corre-
spond to a third direction perpendicular to the first two
rections. Hamilton attempted to build an algebraic syst
embodying those ideas, but for several years he was un
cessful. So, Hamilton gave up the attempt to build an alge
of triplets, and introduced a third imaginary unitk, thus cre-
ating the quaternions.15
959C. C. Silva and R. de Andrade Martins
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When Hamilton was studying the triplett5a1bi1c j , its
real part was interpreted as corresponding to one directio
space, and the two imaginary parts were regarded as c
sponding to the other two perpendicular directions in thr
dimensional space. Now, after introducing a third imagin
unit k, Hamilton changed his interpretation. In a quatern
q5a1bi1c j1dk, the real part has no geometrical mea
ing, and the three imaginary terms correspond to three
pendicular directions.

At this point one may wonder why Hamilton did not dro
the scalar part of the quaternion. It seems that he could h
just retained the vector part of the quaternion to represe
spatial quantity, as was done when vector algebra was
ated a few decades later. However, he did not take this s
and the reason can be found in the context of his resea
He was looking for a generalization of complex numbers
represent geometrical quantities in Euclidian space. Th
fore, the scalar part of a quaternion was essential to pres
the ‘‘complex number’’ character of the new object. Besid
that, if an imaginary triplett* 5ai1b j1ck is multiplied by
another imaginary triplet, the product will contain real term
and hence will not be an imaginary triplet. Therefore, if o
requires the product of two quantities to be of the same k
as those quantities, it is impossible to build a suitable alge
with imaginary triplets.

IV. VERSORS AND UNITARY VECTORS IN THE
SYSTEM OF QUATERNIONS

For complex numbers,i performs a double role: it could
be regarded as representing a direction~perpendicular to the
real axis!, or it could be regarded as ap/2 counterclockwise
rotation.

Let us consider the complex numberr5a1bi that repre-
sents a straight line on a plane with a real componena
and an imaginary componentb @see Fig. 2~a!#. If we multiply
r by i, we obtainr 85 i r52b1ai. If we multiply r 8 again
by i, we obtainr 95 i r 852a2 ib52r . The two multiplica-
tions by i producer 95 i i r52r , which is compatible with
i 2521. The multiplication of a vectorr ~represented by a
complex number! by i and i 2 produces a counterclockwis
rotation ofp/2 andp, respectively.

Because Hamilton regarded quaternions as an extensio
complex numbers for four dimensions, he used the geom
cal representation of a complex number on the planexy ~Ref.
16! to explain the meaning ofi 2521, wherei is the imagi-
nary unit. The other new imaginary units were also regar
as corresponding top/2 rotations, but around different axe

Now, if the vector part of a quaternion contains imagina
units that represent rotations, this part of the quatern

Fig. 2. The rotator character ofi, j, k.
960 Am. J. Phys., Vol. 70, No. 9, September 2002
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might be interpreted as something that produces rotatio
instead of something that corresponds to a straight line
space. Hamilton soon explored this interpretation. He u
the word ‘‘versor’’~meaning ‘‘rotator’’! and defined the con
cept of ‘‘perpendicular versor’’ as a quaternion which is ab
to rotate a vector ofp/2 around a perpendicular direction.17

If we consider three perpendicular axes, it is possible to
sociate a versor to each of them, and it will be able to rot
any of the other two axes so as to coincide with the third o

Tait was the next mathematician who studied quaternio
He developed the quaternion analysis as a tool for phys
research. Tait was a friend of Maxwell at Cambridge, a
Maxwell’s interest in quaternions is due to his relationsh
with him. He also associated versors with rotations and
tributed to them the same meaning as Hamilton did. Ho
ever, Tait changed the designation and replaced ‘‘perpend
lar versor’’ by ‘‘quadrantal versor.’’18 A quadrantal versor is
an operator that produces ap/2 counterclockwise rotation o
a vector without changing its length.

Let us suppose a system of three unitary and perpendic
vectors I, J, K. The operator that changesJ into K is the
quadrantal versori, and the axis ofi lies in the same direc-
tion as I. Thus K5 iJ or i 5K/J. Analogously, we haveI
5 jK andJ5kI @see Fig. 2~b!#. Furthermore, there exist th
inverse transformations:2J/K5K/J5 i or 2J5 iK , and
K5 j I and2I 5kJ. From those relations we have2J5 iK
5 i ( iJ)5 i 2J and thereforei 2521. In the same way, we
obtain the relationsj 25k2521.

As shown above,I, J, K and i, j, k have different mean-
ings. I, J, K are unitary vectors andi, j, k are operators tha
produce rotations. According to the later nomenclature,i, j, k
are axial vectors, andI, J, K are polar vectors.19 Notwith-
standing this difference, Tait used those conce
interchangeably.20

Now the meanings we have assigned toi, j, k are
quite independent of, and not inconsistent with,
those assigned toI, J, K. And it is superfluous to use
two sets of characters when one will suffice. Hence
it appears thati, j, k may be substituted forI, J, K;
in other words,a unit-vector when employed as a
factor may be considered as a quadrantal versor
whose plane is perpendicular to the vector. This is
one of the main elements of the singular simplicity
of the quaternion calculus.21

This indifferent use ofi, j, k for I, J, K appears explicitly
when Tait represented a quaternion using its coordinates

Because any vector whatever may be represented by
xi1y j1zk, wherex, y, zare numbers~or scalars!,
and i, j, k may be any three non-coplanar vectors—
though they are usually understood as representing
a rectangular system of unit-vectors—and because
any scalar may be denoted byw; we may write, for
any quaternionq, the expressionq5w1xi1y j
1zk.22

Although i, j, k and I, J, K are related to the same set
perpendicular axes, they are mathematical entities of dif
ent types, and it is inappropriate to use the same symbo
represent different entities.
960C. C. Silva and R. de Andrade Martins
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V. VERSORS AND UNITARY VECTORS IN VECTOR
ALGEBRA

In the early 19th century, before the development
quaternions, when physicists wanted to refer to the com
nents of magnitudes such as force and velocity, they ha
use different symbols for each component and to work
the mathematical equations using those symbols. There
no symbolic representation such asRW 5x iW1y jW1zkW . Max-
well used quaternions in his treatise on electromagnetis23

but all relevant physical magnitudes were either pure qua
nions or scalars. Hence, Maxwell used a simplified vers
of Hamilton’s ~and Tait’s! theory of quaternions.

The vector algebra used nowadays was developed
Gibbs and Heaviside as a tool to deal with vectors in thr
dimensional space. They both had studied quaternion
used by Maxwell in his electromagnetic theory and
tempted to frame a new system that would be easier t
Hamilton’s.24 The complete quaternion was never used
physical applications, and for that reason Gibbs and He
side chose to work with triplets~pure quaternions! represent-
ing directed magnitudes. They kept Hamilton’s term ‘‘ve
tor’’ to represent this part of the quaternion. Instead of
whole quaternion product~which has a scalar and a vect
part!, they defined two different types of product betwe
two vectors ~the ‘‘scalar’’—or ‘‘direct product’’ and the
‘‘vector’’—or ‘‘skew product’’ !.

Gibbs wrote a vector asa5xi1y j1zk, where i, j, k
compose a normal system of unit vectors, that is, th
mutually perpendicular unit vectors. Their directions we
chosen so thatk is on the side of thei – j plane from which a
rotation from i to j ~through one right angle! appears
counterclockwise.25

The meaning of the symbolsi, j, k in Gibbs’s system is
quite different from the original meaning in the quaterni
system, although the symbols employed to represent t
are the same. For Gibbs,i, j, k only represented unit vector
and are never associated with the concept of rotation.
possible to produce rotations in vector algebra, but this
property of the skew product, not a fundamental property
i, j, k. The operationi 3 j 5k means thati 3applied toj ro-
tates it byp/2 around thei axis resulting ink. Notice that
according to the analysis presented in Sec. II, the ve
product of two polar vectors is an axial vector, and therefo
if i, j, k are polar vectors,k cannot be the product ofi 3 j .
However, Gibbs did not use any distinction equivalent to t
one.

Heaviside had an important role in the development a
use of vector algebra. In his earlier work he explicitly us
the same ideas of the quaternion system, but in his later w
he denied any influence of quaternions on his vector syst

VI. THE PRODUCTS OF TWO VECTORS

As was mentioned above, the creation of vector alge
led to the introduction of new types of products. The study
the difference between the meaning and proprieties of
operations called ‘‘product’’ in the quaternion system and
the vector system shows that the identification of a p
quaternion as a vector is quite problematic because they
different multiplication proprieties.

In 1881 Gibbs introduced the notation used up to
present time. He dropped the complete product and m
tained both the scalar part and vector part independently
961 Am. J. Phys., Vol. 70, No. 9, September 2002
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introduced a ‘‘direct product’’a•b of two vectorsa and b
that was similar to the scalar part of the complete prod
defined by Hamilton, and a ‘‘skew product’’a3b corre-
sponding to the vector part of the quaternion product. T
direct and skew products are related to the complete qua
nion product asa•b52Sab and a3b5Vab. Note that
the direct product is the scalar part of Hamilton’s produ
with the opposite sign.

Starting from those definitions, the products of unita
vectors i, j, k were defined as26 i • i 5 j • j 5k•k51; i • j 5 j
• i 5k• i 5 i •k5 j •k5k• j 50; i 3 i 5 j 3 j 5k3k50; i 3 j
5k; j 3 i 52k; j 3k5 i ; k3 j 52 i ; k3 i 5 j ; i 3k52 j
5k. Note that in quaternion algebra there is only one kind
product betweeni, j, k.

The direct product obeys the commutative rule, that
a•b5b•a but the skew product does not becausea3b
52b3a. The complete product in quaternion system w
not commutative also.

The product of two vectors in the quaternion system ob
the associative law. On the other hand, this property is
valid in the Gibbs–Heaviside system. The associative pr
erty is preserved in the quaternion system because the
drantal versors obey the multiplication rulesi 25 j 25k2

521. To see this, we may consider the multiplicatio
i ( i 1 j ) j , taking into account the multiplication rulesi j 5k
52 j i , jk5 i 52k j andki5 j 52 ik:

i ~ i 1 j ! j 5~ i i 1 i j ! j 5~ i 21k! j 5 i 2 j 1k j5 i 2 j 2 i 52 j 2 i ,
~4!

i ~ i 1 j ! j 5 i ~ i j 1 j j !5 i ~k1 j 2!5 ik1 i j 252 j 1 i j 252 j 2 i .
~5!

In the case of the scalar product in the vector syste
wherei, j, k are unitary vector, we have

i •~ i 1 j !• j 5~ i • i 1 i • j !• j 5~110!• j ~6!

and

i •~ i 1 j !• j 5 i •~ i • j 1 j • j !5 i •~110!. ~7!

In both cases, the last operation represented by the dot s
bol is impossible because the scalar product is an opera
involving two vectors, and not a vector and a number.

In the case of the vector product the associative propert
not valid either, as exemplified below,

i 3~ i 1 j !3 j 5~ i 3 i 1 i 3 j !3 j 5~01k!3 j 52 i , ~8!

i 3~ i 1 j !3 j 5 i 3~ i 3 j 1 j 3 j !5 i 3~k10!5 j . ~9!

When Gibbs identified the scalar part of the comple
product of the quaternion system and adopted the pos
sign, he did not realize the implicit significance of th
change. In fact, the sign is related to intrinsic proprieties
the product such as the associative rule and the meanin
the symbolsi, j, k as explained in Secs. IV and V.

In the same way as Gibbs, Heaviside27 associated the sym
bols i, j, k with ‘‘rectangular vectors withunit lengths paral-
lel to x, y, z.’’ 28 Following Hamilton, Heaviside also inter
preted i, j, k as versors that produce rotations byp/2 and
using this interpretation he explained the multiplication ru
i 25 j 25k2521 andi j 5k52 j i , etc.

The meaning of the rulesi j 5k, etc., may be inter-
preted thus:j signifying a unit vector parallel to y,
and k another parallel to z, leti be a unit taken to
mean, not a unit vector parallel to x, but a rotation
961C. C. Silva and R. de Andrade Martins
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through an angle of 90° about x as an axis. Then
becausej rotates 90° about de x-axis is turned to
coincide with k, we have i j 5k. ~...! As for the
squares, we may verifyi 2521 thus: Rotatej a sec-
ond time through 90° about the axis of x. The first
rotation broughtj into coincidence withk, the sec-
ond brings it to the same line as at first, but pointing
the other way.29

In this same paragraph, Heaviside criticized the confus
brought about by using the same symbol to represent l
and rotations because ‘‘this double use of the same sym
makes it difficult to establish the elementary parts of qua
nions in an intelligible manner.’’ However, he did not intro
duce different symbols to represent those concepts.

In 1885 Heaviside changed his mind and began to ad
an approach that conflicted with the quaternion theory.
criticized the negative sign of the scalar part of the produc
Hamilton’s system because using this sign meant that it
difficult to pass from the Cartesian formulas to vector form
las. Therefore he defined a scalar product without the ne
tive sign to avoid this difficulty.30 Notice that he was no
attempting to solve the mixing of unitary vectors and v
sors.

Now, wheni, j, k are regarded as rotations, this interpr
tation leads naturally toi 25 j 25k2521. On the other hand
when i, j, k are regarded as unit vectors, one is led toi 2

5 j 25k2511. Therefore, a change from minus to plus
the sign of the scalar product corresponds to a shift of in
pretation ofi, j, k from versors to unit vectors.

In 1892 Heaviside emphasized the difference between
sor and unitary vector and criticized the quaternionists
cause the unit vectors were identified with versors, with
consequence that the square of every vector should b
negative scalar.31

The confusion between versors and unit vectors was
discussed by MacFarlane during the controversy concer
vectors versus quaternions in the 1890s.32 MacFarlane’s atti-
tude was intermediate—between the position of the defe
ers of the Gibbs–Heaviside system and that of
quaternionists.33 He supported the use of the comple
quaternionic product of two vectors, but he accepted t
the scalar part of this product should have a positive s
According to MacFarlane the equationjk5 i was a conven-
tion that should be interpreted in a geometrical way, but
did not accept that it implied the negative sign of the sca
product.

MacFarlane credited the controversy concerning the s
of the scalar product to the conceptual mixture done
Hamilton and Tait. He made clear that the negative s
came from the use of the same symbol to represent bo
quadrantal versor and a unitary vector. His view was t
different symbols should be used to represent those diffe
entities.

It is also necessary to stress the difference between a
tor quantity and its graphical representation. In order to r
resent both polar and axial vector quantities graphically,
usually use arrows, that is, we use the same symbol to
resent two different things.

Several years were to elapse before the need for diffe
symbols was met. Woldemar Voigt proposed in 1910 the
of the symbols represented in Fig. 3 in order to repres
polar and axial vectors.34

In 1912 Paul Langevin proposed a bent arrow to iden
962 Am. J. Phys., Vol. 70, No. 9, September 2002
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axial vectors, and a straight arrow to identify polar vectors35

EW and B
\

. This proposal was never accepted, however, a
this day physicists still use the same symbol to repres
those different mathematical entities.

The traditional notation of arrows to represent the po
and axial vectors makes it difficult for students to realize t
the electric field is a physical quantity with polar symmet
whereas the magnetic field has axial symmetry. This tradit
began in the late 19th century with the invention of actu
vector system by Gibbs and Heaviside from a quatern
system.

VII. CONCLUSION

An analysis of symmetry properties shows that it is wro
to identify a pure quaternion as a common~polar! vector, as
Gibbs and Heaviside did when they developed their vec
algebra and as some authors do nowadays.

A quaternionq is a mathematical object formed by fou
numbers which can be written asq5a1bi1c j1zk. Hamil-
ton arrived at quaternions starting from the analysis of co
plex numbers, so thati, j, k are imaginary units that obey th
rules i 25 j 25k2521. Hamilton interpreted a quaternion a
made up of a scalar plus a ‘‘vector’’ part.

In accordance with the geometrical interpretation of co
plex numbers, Hamilton interpretedi, j, k as ‘‘versors’’ that
produce ap/2 rotation when applied to another vector, but
also interpretedi, j, k as unit vectors, that is, the same mea
ing that was used afterwards in Gibbs–Heaviside vector
gebra. He gave the name ‘‘pure quaternion’’ or ‘‘vector’’ to
quaternion without a scalar part, of the formq5bi1c j
1zk. The pure quaternion is a vector in the current se
~that is, a polar vector! only if i, j, k are regarded as uni
polar vectors, but not if they are interpreted as versors.

Hamilton did not drop the scalar part of the quaterni
because pure quaternions did not fulfill the properties
wanted to ascribe to his system. The scalar part of a qua
nion is essential to keep up the ‘‘complex number’’ charac
of the new object and to ensure that the product of t
quaternions is also a quaternion.

Gibbs and Heaviside developed the contemporary ve
algebra inR3 starting from the quaternion system, althou
they later denied any influence of the quaternions over th
system. They interpreted a pure quaternion as a comm
~polar! vector and introduced new definitions of the produ
of two vectors by abandoning the complete quaternion pr
uct and replacing it by two separate types of products,
scalar product and vector product. Besides, they changed
sign of the scalar product, because they interpretedi, j, k as
unit vectors, not as versors.

A pure quaternion is not equivalent to a polar vector inR3

becausei, j, k have different meanings for pure quaternio
and for a vector. Their products obey different rules and th
exhibit different symmetry proprieties. Within the quaternio

Fig. 3. Woldemar Voigt’s representation of a polar and an axial vector~see
Ref. 34!.
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theory, the unitsi, j, k are versors~that is, axial vectors! and
so is the pure quaternion. But the common vector in Euc
ian space is a polar vector.

Besides the differences in symmetry proprieties of a p
quaternion and a vector, there are differences in the pro
eties of the product of two pure quaternions and two vect
The product of quaternions does not obey the commuta
property, but obeys the associative property becausei 25 j 2

5k2521. The scalar product of two vectors is commutati
but is not associative and the vector product is neither c
mutative nor associative.

Finally, the root of the misunderstanding between p
quaternions and common vectors can be found in the
conflicting meanings ascribed toi, j, k by Hamilton and Tait
and in the use of the same symbol to represent what no
days we call a polar vector and an axial vector. The lack
different symbols is one of the sources of student’s difficu
in understanding the difference between those widely dif
ent mathematical concepts.
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