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MEASUREMENT AND THE MATHEMATICAL ROLE OF
SCIENTIFIC MAGNITUDES

Roberto de A. Martins

There are two main currents in the philosophy of measurement. One of
themn is the well known ‘operational approach’ developed by Bridgman and
Dingle! . The other view has received no definite name.? It will be called
here ‘the mathematical approach to measurement’, since it stresses the
relation between measurement procedures and mathematical operations.
This approach has been developed, with some variations, by Helmholtz,
Campbell, Hempel, Ellis and other authors.?

1p w. Bridgman, The Logic of Modern Physics (New York: Macmillan, 1927);
P. W. Bridgman, The Nature of Physical Theory (Princeton: Princeton University,
1936); P. W, Bridgman, The Nature of Some of Our Physical Concepts (New
York: Philosophical Library, 1952); H. Dingle, ‘Science and the unobservable’, Narure
166 (1950), pp. 21-28; H. Dingle, ‘A theory of measurement’, British Journal for the
Philosophy of Science 1 ( 1950), pp. 5-26.

2 It has been called ‘the classical view of measurement’ by Stevens, in: S. S,

Stevens, ‘Measurement, psychophysics, and utility’, in Measurement: Definitions and
Theories, edited by C. W. Churchman and P. Ratoosh (New York: Wiley, 1959), pp.
18-63. But this approach has also received other names. It has been called ‘the
representational theory of measurement’ by Adams. See: E. W. Adams, *On the nature
and purpose of measurement’, Synthese 16 (1966), pp. 125-169.

3 4. von Helmholtz, Counting and Measuring (New York: Van Nostrand, 1930);
N. R. Campbell, Foundations of Science (New York: Dover, 1957); N. R. Campbell,
An Account of the Principles of Measurement and Calculation (London: Longmans,
Green, 1928); C. G. Hempel, Fundamentals of Concept Formation in Empirical
Science (Chicago: University of Chicago, 1952); B. Ellis, Basic Concepts of
Measurement (Cambridge: Cambridge University, 1968).
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The operational approach became popular among physicists and
other scientists, but has never been very popular among philosophers,

perhaps because it does not properly provide a theory of measurement, as
Bridgman himself was aware of.? Since the specification of a measurement
procedure is, according to operationalism, conventional and nearly blind,
this view cannot account for the mathematical structure of science, as it
will be seen below.

The mathematical approach to measurement has received a greater
attention and acceptance from philosophers. Nevertheless, some of its basic
assumptions have received a few criticisms that have not been answered. In
this paper we shall study some of the features of this approach,
endeavouring to show its value, and answering to some objections. We shall
focus our attention upon three aspects:

(1) The mathematical approach to measurement should be regarded as a set
of ‘desiderata’ which are useful whenever fulfilled, but that do not forbid
any kind of measurement procedure;

(i) The mathematical approach recommends that empirical operations
isomorphic to arithmetical operations should be searched for; and only
when this condition is satisfied can we understand the application of
mathematics to science, and only in this case there may arise something
which could be called ‘scientific intuition’ of the phenomena;

(iii) Whenever the magnitudes studied in some field are measurable by
procedures that obey the ‘desiderata’ of the mathematical approach, it is
likely that mathematically simple quantitative laws will be found to hold
between these magnitudes.

1

Let us first study the methodological view used in this paper.® Any

study of measurement procedures — indeed, the same holds for any

epistemological study — may use one or several of the following approaches:
(a) analytical or formal study — consisting in the formulation of
analytical sentences about measurement, such as tautologies,
definitions, classifications, etc., which can neither be submitted to
empirical tests concerning their truth-value, nor have an axiologic
value.
(b) empirical study — consisting in the formulation of descriptions

*pow Bridgman, ‘Operational analysis', Philosophy of Science 5 (1938}, pp.
114-131; P. W, Bridgman, ‘Remarks on the present state of operationalism’, Scientific
Monthly 79 (1954), pp. 224-226.

5 The general principles used in this paper have been discussed in: R. de A.
Martins, ‘Abordagem axioldgica da epistemologia cientifica’, Textos Seaf 2 (1980),
pp- 38-57; R. de A. Martins, “A situagdio epistemoldgica da epistemologia”, Revista
de Ciéncias Humanas (UFSC) 3 (5) (1984), pp. 85-110.
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and general laws about measurement procedures employed by scien-

tists, producing statements that can be tested by being confronted

to the historical or actual practice of scientists.

(c) axiological study — consisting in the proposal of norms and/or

‘desiderata’ about measurement, which cannot undergo empirical

tests, but have an axiologic wvalue, being different from neutral

analytic sentences.
Most or all of the papers on the philosophy of measurement include a
combination of the three approaches. The ultimate aim of a measurement
theory seems to be axiologic: to suggest rules to be followed in
measurement, or to discuss the value of some procedures.

But in order to reach this objective, some analytic study (proposing
concepts, classifications, making inferences from them, etc), and empirical
data or generalizations (what the scientists have usually done in the past,
or what they usually do now, etc) are used.

An objective and clear discussion of analytic and empirical studies
is possible, and it seems possible and easy to reach an agreement concerning
these matters. But it becomes very difficult to reach an agreement when
axiologic problems are at stake. The difficulty here is the same that always
occurs within ethics: the question cannot be settled by simple convention,
because it is not a neutral question, and people differ about the solutions;
and recourse to empirical data is useless, since an ‘ought’ cannot be derived
from an ‘is’.°

Although no method has been discovered for reducing axiological
discussions to scientific discussions, a kind of policy can be used that may
have success in eliminating — or, at least, reducing — axiological
controversies. It is very difficult to make rigid distinctions about what is a
‘good’ or a ‘bad’ procedure; and borderline situations are specially difficult;
but it is not so difficult to reach an agreement about the general lines
which should direct valuable procedures, and often an agreement can be
reached, in practice, about the ‘desiderata’ that should be pursued. Let us
elucidate this point.

Whenever we propose axiological norms for the construction of
measurement procedures, we may either state rigid prohibitions and
demands (strict requirements) that must always be obeyed, or we may
state ‘desiderata’ — a set of conditions that we should endeavour to satisfy,
and that enhance the value of the measurement process when they are
fulfilled. It is very difficult, perhaps impossible, to reach an accord about

4 Although within the tradition of logical positivism it was generally accepted
that propositions about value cannot be derived from matter-of-fact knowledge, this
point has been submitted te discussion in recent times. See: Kai Nieisen, ‘On deriving
an ought from an is: a retrospective look’, Review of Metaphysics 32 (1979), pp.
487-514. But the basic idea behind the distinction still seems to heold.
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strict requirements in any field, and measurement theory is not an
exception. What makes this unanimity so difficult?

At least in part, the reason is this: when we evaluate a scientific
procedure, we are by extension also evaluating scientists. If we criticize or
try to prohibit a kind of procedure that is used by some scientists, they
will feel that their status is being attacked, and they will fight to defend
their procedures. I propose the following empirical generalization as true:
“If someone proposes that any scientific measurement process must obey
conditions (a), (b), ... , (n) — conditions that include both prohibitions and
requirements; and if there are procedures that do not obey all of the
conditions (a), (b), ... , (n); and if these procedures are used and called
‘measurement’ by people who call themselves ‘scientists’; then a reaction
from this group can be anticipated, and they will not agree with the
proposed norms; and the reaction will be stronger the more committed to
their procedures they are, and even stronger when they are unable or
seldom able to fulfill the conditions (a), (b), ... , (n)”. A psychological
explanation of this reaction can be provided. I think that everybody knows
some instances of this kind of reaction, either inside or outside science.

Even in seemingly neutral analytical studies, the same kind of problem
may arise. If we are trying to define ‘scientific measurement’, and if
‘scientific’ is an adjective that carries with it an implicit worth (as it usually
does, at least for scientists), then the definition which seems to be neutral
is, at the bottom, an axiologically valued proposition. The same difficulty
in reaching a consensus will be observed here. Many of the controversies
within measurement theory may be explained by the occurrence of this
kind of situation.

Let us take, as an instance, a very strange question that has been
discussed some time ago: is every measurement a production of numerical
data, or is mere classification also to be included within measurement?’

When talking about measurement, physicists usually think about
numerical data; and since we have two different words — ‘to measure’ and
‘to classify’ — why should we not use both, with different meanings? Why
collapse two different things into a single word? With these and similar
arguments, 1 think that physicists would reach the conclusion: all
measurement is the production of numerical data.

But among psychologists the reaction would be different. Psychologists

7 Adams has openly defended the view that measurement need not be the

assighment of numbers: E. W. Adams, op. cit. p. 129. But even the inclusion
of *nominal scales’ among the scales of measurement, advocated by Stevens, is, after
all, the inclusion of classification within measurement: S. S. Stevens, ‘On the theory
of scales of measurement’, Science 103 (1946), pp. 677-680. See also: W. W.
Rozeboom, ‘Scaling theory and the nature of measurement’, Synthese 16 (1966),
pp. 170-233.
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employ several tests that do not lead to quantitative data, but provide a
classification of the tested people; nevertheless, they have chosen to call
their testing material ‘measuring instrument’, and their test procedures
‘measurement’. If in the definition of ‘measurement’ we include the
condition that it must be a process that leads to numerical data, then
psychologists will feel that their work is being cast to a lower status, and
will react, as they have reacted in this very case.®

The trouble here is the valorization of the expression ‘measurement’.
The scientific community has introjected the famous dictum ascribed to
Lord Kelvin and inscribed at the fagade of the Social Science Research
Building at the University of Chicago: ‘If you cannot measure, your
knowledge is meager and unsatisfactory.”® The word ‘to classify” does not
carry the same psychological impact or value associated with the word
‘to measure’, and hence psychologists (and other scientists as well) prefer to
call their tests ‘measurements’. Now, this is a ‘human, very human’ attitude,
but a silly one. Some people that defend the idea that any classification is a
kind of measurement remind me of the story of the mouse that proposed
that all mice should cut their tails; it had very good arguments, but once
the other mice discovered that the real motivation of that mouse was that
it had lost his tail in a mousetrap, all its arguments fell to the ground.

It seems to me that we should distinguish between (numerical)
measurement and (qualitative) classification procedures. If we choose to
include everything under the same name of ‘measurement’, we must
distinguish between ‘qualitative measurement’ and ‘numerical measurement’,
and it will also be necessary to state that numerical measurement has a
greater scientific value than qualitative measurement. Why? Because
everything that can be done with qualitative data can also be done with
numerical data, but the converse is not true. Numerical data are much more
powerful and useful than qualitative data, and therefore have a greater
value.'®

Once the psychological motivation behind the episiemological
discussion is understood, we may also find a way out of this discussion. We
do not need to make those people, who cannot produce numerical data,
unhappy. Let us tell them: ““All right, you may use the name ‘measurement’
for your classification procedures, if you choose to do so; we do not impose
strict requirements or prohibitions upon this concept. But the relevant
matter is this: it is desirable to develop procedures that yield numerical

% Not every psychologist reacts in this way, of course.

® Kuhn has not been able to find this sentence in Kelvin's writings; but other
similar sentences occur in his works. See T. S. Kuhn, ‘The function of measurement in
modern physical science’, Isis 52 (1961), pp. 161-193,

10 See Rozeboom (op. cit.) and Hempel, op. cit. pp. 54-57.
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data; and whenever a procedure is created or transformed so as to produce
this kind of data, this transformation is to be hailed as an improvement of
the procedure”. Saying this, we state that the production of numerical
data is a ‘desideratum’ of scientific measurement, but we do not forbid
anything. It seems to me that it is easier to reach an agreement about this
kind of proposal than about prohibitions or strict requirements. If
agreement is desirable, then I think that the policy of proposing ‘desiderata’
is a useful one.

I propose that every axiological problem within measurement theory
be answered by the choice of a ‘desideratum’. Let us propose neither
prohibitions nor strict requirements; let us propose neither definitions nor
classifications that carry with them a valorization of their classes and imply
that the practice of some scientists has no value. Instead, whenever value
decisions are implicitly or explicitly at issue, let us propose a ‘desideratum’

an ideal to be pursued, but which does not prohibit or take away the
value of anything. In this way, we may hope to reach an agreement about
the discussed questions,

I do not know whether the proponents of the mathematical approach
to measurement have understood their theory as a set of restrictive norms,
or as a set of ‘desiderata’. But sometimes the approach has been interpreted
as restrictive.' ' In order that it may be accepted by everyone, I propose
that it should be interpreted as an ideal to be pursued, imposing no
limitation upon measurement procedures.

11

Within physics, the most important scientific laws are clothed in a
mathematical formalism. Are mathematical laws'? desirable? and what
conditions allow us to build within science its quantitative laws?

1 think that every scientist agrees that it is useful to find quantitative
scientific laws. 1 do not suggest that science should be restricted to
mathematical laws; I am just stating that this kind of law has a great
scientific value. Quantitative laws are better than qualitative or semi-
-quantitative laws,"? since everything that can be done with qualitative laws
can also be done with quantitative laws, and the converse is not true.'® But

N R.D. Luce, J. W, Tukey, ‘Simultanecus conjoint measurement: a new type
of fundamental measurement’, Journal of Mathematical Psychology 1 (1964), pp. 1-27,
at p. 2: ‘For four decades this emphasis has had a profound influence. In many respects
this has been healthy, but in others it may have been unduly restrictive’,

12 | here mean those laws that are expressed by algebraic functions; even

qualitative relations, of course, might be represented by the symbolism of set theory,
and could be called mathematical laws.

2 Semi-quantitative laws are those that express relations between orders:

‘the gravitational force between two bodies decreases when their distance increases.’
This sentence is not equivalent to the quantitative law of gravitation.

1% we im%]icitly assume that if A is more powerful than B, then A is more
desirable than B. Perhaps this may be denied.
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qualitative laws are not to be forbidden in science; specially when a
quantitative law is lacking, the corresponding qualitative law is indeed
very useful. The formulation of mathematical or quantitative scientific laws
is a *desideratum’, but it is not a strict requirement or imposition.

Quantitative scientific laws require the arithmetical manipulation of
scientific magnitudes. Within quantitative laws, magnitudes are compared or
equalized, and they are added, multiplied, divided, and so on. What is the
meaning of those operations, and when are they justified?

There are cases where the meaning of these operations seems plain
and non-controversial. We know what it means to say that the weight of a
body is twice that of another; we know what it means to add two lengths,
or to find the mean value of several measures of a period of time. But it
is very difficult to give any reasonable meaning to statements such as
‘A has twice the intelligence of B’, or ‘since John has got the scores 5, 6,
and 10, his final grade is 7. We understand the meaning of arithmetical
operations applied to some magnitudes, but not to others.

I shall not repeat everything that has already been said about this
subject, nor repeat the eternal comparison between mass and hardness
measurements.' * Nagel,' ® for instance, has discussed the importance of the
correspondence between empirical operations and arithmetical operations:

if the search for mathematical equations is the aim of physics, other
activities such as experiment, classification, or measurement are
subservient to this aim, and are to be understood only in relation
to it. Consequently, if we inquire why we measure in physics, the
answer will be that if we do measure, and measure in certain ways,
then it will be possible to establish the equations and theories which
are the goal of inquiry. (p. 314) -

It seems that Nagel gives a scientific value only to mathematical laws
and to those activities that lead to them. This is too restrictive, and is in
disaccord with the policy used in this paper. But I think that he has shown
why the ‘desiderata’ proposed by the mathematical approach to
measurement for fundamental measurement'” are important. I think that
Adams has misunderstood this point. He states that the proponents of this

15 ¢ " comy
See, for instance: J. J. D. Smart, ‘Measurement’, dustralasian Journal of

hilosophy 37 (1959), pp. 1-13.
ite Nagel, ‘Measurement’, Erkenntnis 2 (1931), pp. 313-333.

'7 For the distinction between ‘fundamental’ and ‘derived’ measurement, see
the works cited in footnote 3.
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view of measurement do not present any argument that measurement
systems should satisfy the basic assumptions of the mathematical
approach.'® But the paper by Nagel cited above, and that is also cited by
Adams himself, does certainly present arguments for the requirements of
the mathematical approach. We may question the validity of these
arguments, but not their existence. Adams also criticizes the mathematical
approach saying that although its rules could be justified by showing that
some objectives are gained when the rules are followed, yet the same
objectives may be gained using other measurement procedures.!® This
may be true, but he did not show it. Given that the ‘desiderata’ of
the mathematical approach are instrumental in producing quantitative
scientific laws, Adams should have proved that this same objective could be
reached by other means. But he only shows that there are many things
(mainly practical applications) that may be done without quantitative laws,
and that in those cases we do not need a quantitative measurement that
follows the rules of the mathematical approach. He did not propose another
theory that has the same power as the mathematical approach.

Much of Adams’ criticism only shows that the rules of the
mathematical approach should not be regarded as restrictive — and this
agrees with the view of this paper. He also presents some weaknesses of the
usual formulation of the mathematical approach, such as the problem of the
constancy of objects in measurement; [ have elsewhere discussed this aspect
of the theories of measurement.?°

It seems that Adams’ criticism has also been a reaction against the
mathematical approach viewed as a restrictive theory that forbids
psychological procedures. Let us analyze this point.

Consider the evolution of temperature measurement within physics.
When temperature was measured only by liquid-indicator thermometers,
the theory of thermal phenomena could not advance much. Mercury
thermometers did provide precise, reproducible numerical data; but what
was the meaning of these numbers? What meaning could be given to
equal differences of temperature? What meaning could be given to a
temperature being twice as high as another? Now, compare this with the
modern thermodynamic scale of temperature. Everything has changed, and

L Adams, op. cit. p. 129,

19« 1 will argue that, given certain objectives to be gained by measurement,

there is no reason why the five assumptions should be satisfied : these objectives may be
gained using procedures of measurement conforming to the representational concep-
tion of measurement, but they may be gained as well in other ways too.” Adams, op.
cit. p. 129,

20 R de A. Martins, ‘Experimental tests of isometry hypotheses’, British
Journal for the Philosophy of Science 33 (1982}, pp. 296-304.
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we can understand what a temperature ratio means,

Nowadays, IQ tests provide numerical data that are at their best
equivalent to the old indications of mercury thermometers. Unless we gain
some knowledge about the empirical or deeper meaning of IQ addition,
IQ differences, or 1Q ratios, the theory of intelligence cannot go very far,
and we will not be justified in building quantitative laws where IQ enters
as a parameter submitted to arithmetical operations.

IQ measurements — if measurements they are — do not fulfill the
‘desiderata’ of the mathematical approach to measurement. This does not
forbid 1Q tests, but shows in which direction we should strive to improve
these tests, in order that a quantitative theory of intelligence may be elabo-
rated.

But if we interpret the mathematical approach as a prohibition of any
fundamental measurement that does not satisfy its requirements, then
Adams is justified in attacking it, because it would forbid a useful practice
within psychology.

Some time ago, it seemed that it would be forever impossible within
psychology to create an empirical analogue of arithmetical properties. If
this were true, then psychology would forever have great theoretical
limitations. But it has been found that several hypotheses about the
arithmetical properties of psychological causes may receive a clear
and simple empirical identification, and the procedure of ‘conjoint
measurement’ has broken the old mathematical limitation of psychology.? !
It is not difficult to foresee a very fruiful development of mathematical
laws within theoretical psychology that is bound to arise from this recent
break-through. Now psychologists will have more reasons to study and
defend the mathematical approach, than to attack it.

But there is also another aspect of the importance of finding empirical
equivalents to arithmetical operations. It is the possibility of development
of an insight of the inner working of phenomena — something that might
be called ‘scientific intuition’.

Let us first describe what we mean by ‘scientific intuition’. We
sometimes find in the metascientific literature (specially in biographical
literature) statements such as: ‘X was not guided by the mathematical
formalism; he had a physical insight of the whole situation.’?? Although

2l See: N. H. Anderson, ‘Algebraic rules in psychological measurement’,
American Scientist 67 (1979), pp. 555-563, and references therein.

=2 Recalling his first conversation with Niels Bohr, in 1922, Heisenberg stated :
“... his knowledge of the interrelations did not derive from a mathematical knowledge
of the basic suppositions, but from an intense study of phenomena, which made it
easier for him to grasp the relations by intuition than to deduce them.’ W.
Heisenberg, Schritte ueber Grenzen (Muenchen: R. Piper, 1971); spanish translation:
Mds Alla de la Fisica (Madrid: Editorial Catolica, 1974), p. 46,



80 MEASUREMENT AND THE MATHEMATICAL ROLE OF
SCIENTIFIC MAGNITUDES

this non-mathematical insight may appear in different degrees, most
physicists develop it to some extent. Physics students do usually become
amazed at their teachers’ ability in reaching quantitative conclusions about
physical situations without doing a single explicit mathematical operation.
At first inspection, it seems strange that results, that the students can only
reach through the manipulation of formulae, can be found without the
equations. The teacher has used his ‘physical intuition’; but what is this?
The name is misleading, since it seems to point to a strange and non-rational
capacity of the physicist. What really happens is that this teacher knows the
empirical counterparts of the mathematical operations, and he can operate
with images instead of equations, and reach the same results because there is
a correspondence between their properties. When someone is well
acquainted with the empirical facts, it is easier (and safer) to operate with
the images of the physical operations than with the isomorphous
mathematical calculus. If there were no correspondence between empirical
operations and mathematical operations, this ‘scientific intuition’ could not
exist.

Thus, in the scientific fields where the ‘desiderata’ of the mathe-
matical approach to measurement are satisfied, the scientist may obtain an
insight into the studied phenomena, and this seems an additional advantage
of this approach.

There is still another important aspect of science that arises whenever
the requirements of the mathematical approach are fulfilled: we may find
simple mathematical laws. We shall here refer to the simplicity of the
algebraic formalism of quantitative laws; other aspects of the simplicity of
scientific laws?>? will not be dealt with here.

It seems that scientists do attach a greater value to simple laws than to
complex ones. Whenever a quantitative law is found, we are glad if it is a
simple one, that is, with as few constants as possible, and with a simple
functional structure. The finding of simple quantitative laws is a scientific
‘desideratum’ — but, let us repeat, complex laws are not forbidden.

Why are simple laws desirable? They give us a kind of aesthetic
pleasure; they are easier to understand, to use and to recall; they seem

23R, Rudner, *An introduction to simplicity’, Philosophy of Science 28 (1961),
pp. 109-119; D. J. Hillman, ‘The measurement of simplicity’, Philosophy of Science 29
(1962), pp. 225-252; H. R. Post, British Journal for the Philosophy of Science 11
(1960), pp. 32-41; K. S. Friedman, ‘Empirical simplicity as testability’, British Journal
for the Philosophy of Science 23 (1972), pp. 25-33.
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‘truer’ or ‘more fundamental’ than complex laws; etc.2* It is very difficult
to say exactly what is really important in simple laws, but I think that there
is a consensus about the desirability of simple laws, and I shall use this
agreement without trying to account for it.

The existence of simple quantitative scientific laws seems to have a
multifarious explanation. 2% Some simple laws, such as Hooke’s law, are just
first-order approximations, and their apparent simplicity is due to the use
of a mathematical artifice. Other laws derive their simplicity from sy mmetry
and homogeneity conditions imposed upon the subject. One instance is the
law of decrease of light intensity with distance from a point light source in
vacuum. But at least part of the simplicity of physical laws is due to the way
physical magnitudes are conceived and measured. Ellis?>® has already dis-
cussed the relevance of measurement procedures for the simplicity of
physical laws, but I think that something may be added to his consid-
erations.

When we relate derived magnitudes?” to fundamental magnitudes
through simple mathematical relations, we are freely imposing some
simplicity upon the theorems derived from these definitions. If, instead of
defining density as p = dm/dV, a more complex relation was used, it is
obvious that derived formulae would become more complex. But here
the simplicity is introduced in an artificial and straightforward way. It is
not so easy to see how the structure of measurement of fundamental
magnitudes can account for the simplicity of the laws in which they occur.

In some fields of physics it is easier to see how relevant the structure
of measurement is for the resultant scientific theory. In special rela-
tivity, physicists are greatly concerned with measurement processes, and
are aware of their consequences for the theory. 1t is widely known that
Einstein took a great care in describing the way of measuring the length of a
moving body and the time when an event occurs, relatively to moving
reference frames. It is also well-known that from this measurement
specification, some definitions, and the postulates of relativity, the laws of
space-time transformation (Lorentz transformations and derived laws)

e —

2% For the aesthetic aspects in science, see: 5. Chandrasekar, ‘Beauty and the
quest for beauty in science’, Physics Today 32 (1979, july), pp. 25-31; M. Maruyama,
‘Epistemologies and esthetic principles’, Cybernetica 21 (1978), pp. 273-282,

25 Gee A. Einstein, ‘On the method of thecretical physics’, Philosophy of
Science 1 (1934), pp. 163-169; H. Margenau, ‘Einstein’s conception of reality’, in
Albert Einstein: Philosopher-Scientist, ed. by P. A. Schilpp (New York: Harper and
Brothers, 1959), pp. 245-268.

28 Ellis, op. cit. pp. 81-86.

27 For the concept of derived measurement, see the works cited in footnote 3.
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result. This means that some of the most important theorems of special
relativity are straightforward consequences of the measurement procedures
imposed upon some physical magnitudes.?®

But let us remain within classical physics. The important question is:
how does the measurement process chosen for the fundamental magnitudes
of physics lead to simple quantitative laws?

The fundamental magnitudes of physics, which have a direct and
independent measurement process, are extensive magnitudes.?® Extensive
magnitudes are those for which there is a physical process of concatenation
with properties equivalent to those of mathematical addition: using two
systems A and B, we may produce a third system C such that the value of
the relevant magnitude in C is the sum of the values of that magnitude in
A and B.

We add time intervals by making the end of the first interval coincide
with the beginning of the second. We add masses by justaposing the two
bodies. We add lengths of two sticks placing their extremities in a straight
line and making the end of one stick coincide with the beginning of the
other; and so on. These properties are not derived from a theory: they are
imposed by us upon our concepts. Why have we imposed upon our
measurements exactly these and not other different specifications? Ellis*®
has discussed this problem, and he has shown that if lengths were
added by placing the sticks perpendicular to one another, the ‘desiderata’ of
the mathematical approach would still be fulfilled; but this altemnative is not
used by us. Why do we use exactly the concatenation processes that we
actually use?

This question has several answers. If we ask about the conscious
motivation that historically produced this choice, I think that the answer is:
none. If we ask why we accept this choice as natural and good, and
preferable to other alternatives, I think that the answer is: mainly because
of habit and social influence. But if we ask whether there is some rational
scientific motivation that could justify this choice, and that could have
acted as an unconscious historical motivation, I think that the answer is:
this choice leads to simple quantitative laws among the fundamental
magnitudes of physics. We choose the same concatenation process for

28 gee: A. Einstein, ‘Zur Elektrodynamik bewegter Koerper’, Annalen der
Physik 17 (1905), pp. 891-921; see also: R. de A. Martins, 'Use and violation
of operationalism in relativity’, Manuscrito § (1981), pp. 103-115; R. de A. Martins,
‘Force measurement and force transformation in special relativity’, American Journal
of Physics 50 (1982), pp. 1008-1011, and references therein.

29 For the concept of extensive magnitudes, see the works cited in footnote 3.

30 g, Ellis, *Some fundamental problems of direct measurement’, Ausrralasion

Journal of Philosophy 38 (1960), pp. 3747.
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several magnitudes, or we choose concatenation processes that are subsets
of other concatenation processes, and this produces the simplest kind
of quantitative laws: direct proportionality among these magnitudes.

Let us consider an instance: for the set of systems usually called
‘wires’, the same physical process corresponds to length addition and to
electrical resistance addition: we just join the extremities of the wires.
It follows from this choice of the same concatenation process that, for any
homogeneous wire, the electrical resistance is directly proportional to
its length.

The concatenation process corresponding to mass addition is different
from the process for length addition. To sum masses we just place the
bodies together in any way. But the concatenation process for length
addition is a subset of that for mass addition. Hence, whenever we add
the lengths of two bodies, we also add their masses. Therefore, although
the concatenation processes for mass and length are not the same, the mass
of homogeneous wires must be directly proportional to their lengths.

It is this simple proportionality that allows us to define some simple
derived magnitudes for homogeneous bodies. Both masses and volumes
add by simple justaposition; hence, for homogeneous substances, the mass
is proportional to the volume; therefore, for homogeneous substances, we
can define the density as the ratio of mass to volume, because this ratio is a
constant.

Every scalar that obeys a conservation law adds by simple
justaposition: mass, energy, electrical charge, the volume of incompressible
fluids, etc. Several magnitudes are added when the systems are joined in
series: lengths, electrical resistance, electrical potential difference,
temperature differences, etc. The existence of a small number of different
concatenation procedures, and the simple relations between these
concatenation procedures, lead to simple mathematical relations between
the fundamental magnitudes associated to them.

I think that I have shown that the actual processes of concatenation
that we use are instrumental in the production of simple mathematical laws
between the fundamental magnitudes of physics. Since the production of
simple scientific laws is a ‘desideratum’, then the use of the concatenation
processes that we use must be considered very useful.

v

The basic points of this paper may be summarized as follows: the
main criticisms against the mathematical approach to measurement can be
dismissed by emphasizing that its requirements are ‘desiderata’, not strict
impositions or prohibitions. The importance of the mathematical approach
to measurement can be shown by its consequences: it allows us to create
mathematically simple quantitative laws, and to develop a scientific
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intuition concerning the relevant phenomena.
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ABSTRACT

The mathematical or theoretical approach to the theory of measurement
fopposed to the operational approach) is usually accepted by philosophers, at least in
its general lines. Some recent criticisms against this theory can be answered by
qualifying the requirements of the theoretical approach as ‘desiderata’, not as strict
impaositions or prohibitions. Besides, it is shown that the use of this approach is
instrumental in creating mathematically simple gquantitative laws and allowing the
development of a ‘scientific intuition’ concerning the relevant phenomena.

RESUMO

Os filésofos geralmente aceitam pelo menos as idéias gerais da abordagem
matemdtica ou tebrica da teorin da mensuragdo. Essa abordagem opde-se ao
operacionalismo. Algumas criticas recentes contra a abordagem tedrica podem ser
respondidas qualificando-se as normas que ela propde como “‘desiderata’”, e ndo como
imposicdes ou proibigSes estritas. Além disso, mostra-se que o uso dessa abordagem
ajuda a crigr leis quantitativas matematicamente simples, e permite o desenvolvimento
de um tipo de “iniuigdo cientifica’ sobre os fendmenos relevantes.



