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Relativistic dynamics has been historically built without an immediate connection to empirical
operations. In order to test dynamic laws by experiment, it is necessary that at least one dynamic
parameter be made measurable for moving systems. A method of force measurements applicable
to moving systems is proposed. It is shown with the aid of thought experiments that the method
leads to the accepted relativistic force transformations.

L INTRODUCTION

The transformation of forces in special relativity is well
known': if a force acts upon a body and the motion of this
body relative to several reference systems is parallel to the
force direction, then the force has an invariant value. If the
velocity of the body is perpendicular to the direction of the
force, then the force has its value reduced by the same fac-
tor appearing in Lorentz contraction. If v is the velocity of
the body relative to S” parallel to the x axis, and F, and F,,
respectively, the components of the force relative to the
instantaneous inertial proper frame of the body, then these
components, relative to S, transform according to

= (1)
F; =F 1<%/ 2)

The derivation of these relations is sometimes grounded
on electrodynamic considerations.” But in any elementary
course on special relativity a strictly mechanical derivation
is desirable. Tolman endeavored to use the lever law to
derive force transformations® but he arrived at a result op-
posite to the accepted one. This attempt gave rise to one of
the most famous relativistic problems: the “lever para-
dox.”

Deductions clothed in sophisticated symbolism are usu-
alin advanced textbooks.” But these give no insight into the
meaning of the relations, and do not elucidate the empirical
meaning of force. Some modern elementary textbooks in-
troduce relativistic dynamics with the study of momentum
conservation in collisions and a simple derivation of mass
transformation.® In this approach, force is defined as dp/
dt, and the transformation formulas for force components
are derived from the transformations of momentum and
time. This approach is also due to Tolman.” It does not
elucidate the empirical meaning of forces, either.

Itisinteresting to sec how Einstein managed the issue. In
his first paper on special relativity,” he emphasized the
operational meaning of space and time intervals. He
worked out in detail the methods of ascertaining the length
of a moving stick and the simultaneity of distant events.
From this analysis and the postulates of special relativity,
the known kinematical transformations were derived. The
success of this kind of approach has stimulated the devel-
opment of Bridgman’s operationalism,” and has sometimes
been regarded as one of the basic components of special
relativity. "’

It has not been made so conspicuous that Einstein’s dyn-
amics did not follow a similar method. He takes force as the
fundamental parameter of his dynamics.® Electromagnetic
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and other dynamic quantities (mass,work) are directly or
indirectly related to force. Being derived parameters, their
measurement depends on the measurement of forces. At
several places he states that forces are to be measured by a
spring meter, This provides a crude operationalization of
force. But while the relation between force and elastic de-
formation of bodies at rest was well known, the behavior of
a moving spring had not been studied, and therefore the
properties of the force produced by a moving spring at-
tached to a moving body were not clear. Was this force to
be considered constant (invariant)? Perhaps Einstein
though so, at that time, but there was no ground for such a
supposition: moving bodies undergo Lorentz contraction;
with the resulting change of atomic distances, the elastic
constant of moving materials could also change.

Based on unanalyzed force measurements, relativistic
dynamics was therefore built upon a weaker empirical
foundation than relativistic kinematics. In a later approach
to relativistic dynamics,'" Einstein makes no reference to
measurements, and contents himself with the derivation of
the known formulas with the aid of conservation laws.
Since that time, the concept of force in special relativity has
been relegated to the background, and no operationaliza-
tion or direct derivation of its transformation properties
has been undertaken.

It would be highly desirable to produce derivations of
relativistic transformations of the main physical param-
eters that resulted as direct and simple as the elementary
derivations of time and length transformations. Besides, it
would also seem desirable to give to the main physical pa-
rameters an operational elucidation such as those devel-
oped by Einstein for space and time measurements. It is not
necessary that each parameter of a physical theory be made
directly measurable, but the empirical elucidation of phys-
ical parameters is desirable whenever possible. The possi-
bility of independent measurement of new parameters of
any theory increases its empirical content and testability.
Inan attempt to satisfy those demands, this paper presents
an empirical elucidation of the force concept that is very
simple, independent of electrodynamics, and compatible
with special relativity. With the use of this elucidation a
simple derivation of force transformations is obtained.

IL. FORCES ACTING UPON MOVING BODIES

Elementary textbooks on classical mechanics usually de-
scribe a method for producing and measuring forces with
the aid of springs and dynamometers."* This is an accepta-
ble method when the bodies and springs are at rest relative
to the reference system. But the main problem, in relativis-
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Fig. 1. Bouasse's suggested experiment for testing the
constancy of the weight of a moving body.

tic dynamics, is to provide an empirical meaning to forces
produced by moving elastic bodies. How can this force be
compared with that produced by a still spring?™* It would
be necessary to submit a body to the forces of the two
springs, at the same time, in order to compare them. But if
the springs are in relative motion, how can this be done?
Here is the main problem of relativistic measurement of
forces.

The measurement of forces acting upon moving bodies
has puzzled prerelativistic physicists. Descartes had strong
doubts about the constancy of the weight of a falling
body.'* Why should this force be constant? Could not this
force depend on the speed of the body? He discussed these
conjectures, but proposed no method for deciding this
question by experiment. It appears to me that the earliest
solution was proposed by Bouasse in 1895."

Let us suppose that a body C is attached to a thread of
very small mass wound around areel R (Fig. 1). The reel is
connected to a spring S. The elongation of the spring is
measured by a scale that indicates the force produced by
the spring upon the reel-and-body system. If Cis at rest or
in uniform motion, the resultant force acting upon it must
be null. Hence, the force produced by the spring upon the
system will in these cases be equal to its weight if the air
resistance is negligible. It is possible to give to the reel a
uniform speed and test whether the elongation of the spring
changes. If it does not change, then the weight of the body
C does not depend uponits speed, when in uniform motion.

Bouasse’s ingenious suggestion shows a way of attaching
a still spring to a moving body. An adaptation of this meth-
od may be used to compare forces produced by still and
moving springs, whenever these forces are parallel to the
velocity of the moving spring (longitudinal motion).

Suppose two threads of negligible mass are wound
around a system R of coupled reels (Fig. 2). These reels
unwind the threads at a constant speed u. At the extremity
of each thread a dynamometer is attached. One of them (4 |
is at rest relative to a reference system S. The other one (B}

Fig. 2. Two dynamometers 4 and B are attached by threads to a system of
reels R. The analysis of this system shows that the force produced by &
upon R is equal to the force produced by A upon R, whatever the speed v of
B
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recedes from 4 with a constant speed v relative to this sys-
tem. The system of reels R is acted upon by the two oppo-
site forces produced by 4 and B. It moves with a constant
speed u relative to S. The threads transmit the forces from
A and B to R without change, since they have very small
masses. Hence we may talk as if the dynamometers acted
directly upon R.

The system of reels R is acted upon only by the forces
produced by A and B. Its speed is constant, and therefore
these forces must be numerically equal, relative to any ref-
erence system. If the proper forces produced by these
springs are equal (that is, if the forces produced by the
springs relative to their proper reference systems are equal),
then the forces produced by springs in longitudinal motion
are invariant.

Relative to a reference system attached to R, the system
of threads and springs is completely symmetric. Therefore
the elongations of the springs relative to R must be equal,
and the proper elongations of the springs will also be equal.
Therefore the proper forces produced by the dynamo-
melers are also equal, and the force produced by a spring in
longitudinal motion is invariant. This is the usually accept-
ed relativistic transformation law for longitudinal forces.

[II. TRANSVERSE MOTION

In order to compare forces produced by springs that are
moving in a direction perpendicular to their elongations, it
is necessary to use another imaginary device, described be-
low.

Suppose an infinite solid rod D is transversely pushed
toward opposite directions by two infinite series of parallel
springs 4,B [Fig. 3(a)]. Each spring is fastened at equal
distances to solid rods at one extremity; these rods are con-
strained to maintain a constant distance between them by a
device that is not shown in the figure. The other end of the
springs is attached to frictionless balls that slide at D's sur-
face. All springs are built of the same alloy, with equal
dimensions. They are kept under identical proper condi-
tions, with equal elongations. Their proper forces upon D
are, therefore, equal.

The systems of springs 4 and B travel in opposite direc-
tions with equal speeds relative to D [Fig. 3(a]]. Relative to
D, the forces produced by each spring are equal, and their
mutual distances are also equal. Hence the mean resultant
force acting upon each section of length L of the rod D is
zero. Therefore D will have no acceleration.

13

Rl i

Fig. 3. Solid rod of infinite length D15 pushed by twe infinite sets of equal
springs 4 and B. Relative to D the whole situation is symmetrical (a), but
relative to B the distance between the springs of the system 4 undergoes
Lorentz contraction (b]. The force produced by the springs of system A4
must decrease in the same ratio as the length, in order that the equilibrium
of D might be accounted relative to B.
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Relativeto B [Fig. 3(b)], the system of springs A travelsat
a speed v. Relative to B, the distance between adjacent
springs of the system 4 is d, and the distance between
adjacent springs of the system B is d ;. Owing to Lorentz
contraction the following relation will hold between these
quantities:

d, = dy(l — v/, o)

Relative to B the mean number r,, of B springs that act
upon a section of length L of rod D is

ny=L/dg, (4)
and the mean number n,, of A springs acting upon this same
section of the rod must be

ny=L/d,. (3)

The mean total forces produced by each system upon
each section of D must be equal, since [ is at equilibrium.
Hence,

ngFy=n,F,, (6)
where F, and F), are, respectively, the forces produced by

each 4 spring or B spring upon D, relative to B. From (4),
(5), and (6) we derive

F.El/dﬂ =F,/d, 7
and therefore, from (3),
Ei=Fl—utd)le (8)

Therefore, relative to B, the force produced by each A
spring upon D is smaller than the force produced by each B
spring upon D. Transverse motion does change the force
produced by the springs, in a ratio equal to the Lorentz-
contraction factor. Relation (B ) is the usually accepted rela-
tivistic transformation law for transverse forces, and is
equivalent to (2).

Thus far we have not discussed the direction of the forces
produced by the springs. In classical mechanics the force is
always parallel to the elongation of the springs. In relativis-
tic mechanics it is known that this is not the case in oblique
motion.'” In order to find the transformed direction of a
force in relativistic mechanics, one may decompose it into
its longitudinal and transverse components, transform
these components, and add them again. This process obvi-
ously presupposes that the directions of longitudinal and
transverse forces are not changed in transformation. It is
not difficult to prove this, as is shown below.

In the case of longitudinal motion the system is symmet-
ric relative to the direction of the threads. Therefore the
direction of the force must be parallel to the direction of the
threads. The existence of any longitudinal motion does not
break this symmetry, and therefore does not change the
direction of the force. If there is an oblique motion, there is
no symmetry relative to the direction of the threads, and
the argument can no longer be applied.'®

In the case of transverse motion, let us analyze the prob-
lem relative to B [Fig. 3(bj). All B springs are at rest relative
to this system. The forces that these springs produce upon
D must therefore have the direction of their elongations.
The forces produced by the B springs are therefore perpen-
dicular to D. Now, if the forces produced by the 4 springs
upon D were not perpendicular to D, there would be a re-
sultant force parallel to D, and D would be accelerated.
This is not the case, as can be seen from the hypotheses.
Therefore, relative to B, the forces produced by the moving
A springs are also perpendicular to D, that is, they have the
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same direction as the proper forces produced by the A
springs. Therefore this kind of transformation does not
change the direction of transverse forces.

Notice that all these properties of forces have been der-
ived from thought experiments, without the use of actual
experimental data. We have derived the force transforma-
tions from relativistic kinematics (Lorentz transforma-
tions) and from the proposed method for measuring forces.
Something similar to this is done in the derivation of the
relativistic transformations of time and length: they are de-
duced from the relativistic postulates and from the chosen
measurement procedure for time and length. It seems that
the similarity between both procedures recommends this
kind of derivation of force transformations.

IV. FINAL COMMENTS

In this paper we have presented an empirical elucidation
of force that allows the derivation of the relativistic force
transformations. Nothing in this elucidation is really new.
All the necessary ideas were available at the time when
Einstein published his first papers. It is indeed remarkable
that nobody has hitherto used ideas such as these in order
to develop an operational relativistic dynamics.

In the above treatment of forces, use was made of ex-
tended bodies (threads, rods) in the derivation of force
transformations. This is a weak point in our approach,
since the behavior of extended bodies in special relativity is
far from simple.'” If we read the details of the derivation of
the transformation law for longitudinal forces again, an
important gap may be found. We have supposed that a
thread with small (negligible) mass was used to connect the
springs to the system of reels. This made it possible to con-
sider only the action of the springs upon the reels and over-
look the forces acting upon the threads. But in special rela-
tivity, no stressed thread is devoid of mass. Besides its
“normal” (unstressed) mass, it will have an additional mass
Am equal to™

Am=FL /¢, 9]

where F is the stress, L the length of the thread, and ¢ the
speed of light. As the thread unwinds it acquires a linear
speed and its linear momentum increases. Relative to R, as
B recedes with a speed u, the rate of mass change of the
thread will be

dm/dt = FdL /(cdt) = Fu/c’ (10]
and the rate of momentum change of the thread will be
dp/di = Fu'/é’. (11)

The resultant force acting upon the thread is therefore non-
zero, and the force produced by the spring upon R will be
smaller than F. Its value will be

F'=F(l — /). (12)

Hence, if a spring is directly attached to the system of reels
(as in the case shown in Fig. 1) and another spring is at-
tached to the unwinding thread, experiment will show that
the forces produced by the two springs are not equal, their
difference being a second-order relativistic effect due to the
non-negligible mass of the stressed thread.Therefore, if
Bouasse’s suggestion s strictly followed, experiment will
“prove” that the force of a longitudinally moving spring
decreases with motion. We were careful in avoiding this
difficulty, using a system of two reels and two threads (Fig.
2). The above criticism does not apply to our modification
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of Bouasse’s method.

It has sometimes been proposed' that the currently ac-
cepted force transformations of special relativity are
wrong. The elucidation proposed in this paper is incom-
patible with such claims, and may be considered a new
argument against those reformers. It is very difficult to see
how they would describe the cases of equilibrium studied in
this article.
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