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.Length paradox in relativity

Roberto de A. Martins

Departamento de Fisica, Universidade Federal do Parand, Curitiba, PR, Brazil

(Received 17 May 1977; accepted 24 September 1977)

The apparent self-contradictions of special relativity in thought experiments, where a body is
intended to traverse a slit, do not have so simple a solution when that object is three-
dimensional as when it is an idealized one- or bi-dimensional body. We use a special case of
this new kind of situation in order to exemplify the general method whereby any such

paradox may be analyzed and shown to be no real contradiction.

I. INTRODUCTION

A well-known paradox of special relativity! arises when
one tries to find out whether a rod of rest length /o will
traverse a slit of equal rest length. In the simplest cases their
relative motion is uniform and they keep parallel to each
other.2 The naive analysis shows an apparent contradiction:
from the rod’s point of view, the slit will undergo a Lorentz
contraction and, becoming smaller than the rod, will not
allow it to pass; from the point of view of the slit, the rod will
become smaller by Lorentz contraction, and will easily pass
through the slit.

If the motion is uniform and the rod is to have any chance
of passing, its velocity should be inclined relative to the slit,
as shown in Fig. 1(a). In such cases, as was shown by Marx,2
relativistic analysis should take into account a relative
rotation of the body, since Lorentz effect only applies to
lengths parallel to the velocity direction, as shown in Fig.
1(b). Introducing this feature, in those cases studied, it is
seen that there is no real contradiction: when the analysis
from one reference frame shows that the rod will not pass,
the same result will follow from the analysis from other
reference frames.
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Fig. 1. (a) Length paradox: a rod moves toward a hole; both have rest
length lo. If the rod contracts, it will pass through the hole; if the hole
contracts, the rod will not pass. (b) Full length of the rod does not undergo
Lorentz contraction: only its projection parallel to its velocity will be
contracted. This appears as a rotation of the rod, and a smaller contraction,
as viewed from the hole. The rod may pass without collision if its rest length
is smaller than the hole’s and if widths may be neglected.
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The paradoxes studied by Marx could not be cleared up
if this rotation effect were not used. A different analysis will
be necessary whenever a rotation is not relevant—when, for
instance, the moving body is a sphere, instead of a rod. One
such problem will be stated (Sec. IT) and solved (Sec. III);
next a general discussion (Sec. IV) about any kind of length
paradox will be developed, and we shall show that they can
always be solved within relativistic kinematics.

II. THE SPHERE AND THE RING

This new form of the length paradox was suggested by
one of our students, Alfonso de Orte. A ring R and a sphere
S, as shown in Fig. 2(a) of nearly equal rest radius are ob-
served to move relative to a reference frame with perpen-
dicular uniform velocities, in such a way that the ring moves
along its axis direction; their geometrical centers have such
equations of motion that they are expected to meet at a
certain point O, in a future time. Will the sphere pass
through the ring? It seems so, since the sphere will be con-
tracted in the direction of its motion, and so it will not touch

(b)

Fig. 2. Sphere (S) and ring (R) in perpendicular motions. (a) Sphere is
contracted, and seems to fit inside ring (b); so it could pass through the
ring.
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the ring, as shown in Fig. 2(b); but a different.conclusion
is reached if the problem is examined from other reference
frames.

As studied from a reference frame at rest relative to the
ring, the sphere moves toward it, as shown in Fig. 3(a) and
is easily seen not to come from its axis direction. Now, the
ring is at rest, and its diameter is 2R; the sphere will un-
dergo Lorentz contraction in the direction of its movement,
but its transversal cross section will not be altered; geo-
metrically it may be shown that it cannot pass through the
ring, whatever be the value of the contraction.

From the rest frame of the sphere, the ring approaches
it obliquely, and will become elliptic, with one of its di-
mensions shorter than 2Ry, as shown in Fig. 3(b); the sphere
can neither pass through the ring nor even stay inside it.

Two of these three analyses seem to show that there will
be a collision; the conclusion of the first, on the contrary,
is that collision will not happen. If quantitative analysis
shows that all of them are correct, this will mean that rel-
ativity is self-contradictory, and this is not desirable; so,
there must be something wrong somewhere. Our common
sense tells us that the first analysis should be the wrong one
and we shall try to prove it.

III. COLLISION CONDITIONS

For mathematical simplicity, the problem will be reduced
to a plane: we shall disregard any dimensions perpendicular
to the plane of the ring’s and the sphere’s centers, parallel
to their velocities. So the sphere will be replaced by a circle
and the ring by two points. No lack of generality will follow
from this simplification, as the overlooked dimensions are
equal in the three frames of reference.

Let us choose a frame so that its origin lies on the point
where the centers of sphere and ring will meet (Fig. 4). The
x axis is parallel to the sphere’s velocity, and the y axis
parallel to the ring’s velocity. If the time when the centers
would reach O is taken to be ¢t = 0, the equations of motion
of the points 4 and B of the ring and the center C of the
sphere are:

Xq = =Ry, (1a)
Ya = Udl, (1b)
xp = Ry, (2a)
Vb = Ugt, (2b)

X = —U.l, (3a)

Ve =10, (3b)

where v, is the ring’s speed, v, the sphere’s speed.

The sphere should have a radius smaller than Rg; but we
shall suppose it to be exactly equal to Ry, because the dif-
ference may be as small as one wishes. If it did not contract,
the equation of its circumference would be

(x = x)2+ (0 = y)* = R}, 4)

where x and y are the coordinates of any point of the cir-
cumference of the studied circle. According to relativity,
all x dimensions are contracted by a factor v given by

y = (1 = Y2, (5)
where ¢ is the speed of light in vacuum. Relative to the
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Fig. 3. (a) Sphere as seen from ring cannot pass, because it contracts only
in the direction of its motion. (b) Ring as seen from sphere will not allow
it to pass, because the ring transforms into an ellipse with an axis smaller
than sphere’s diameter.

reference frame now used, the contracted circumference
(an ellipse) will be described by relation:

(x = x)%/v2+ (y — y.)* = R}, (6)

If the sphere passes through the ring, no point of this
circumference will ever meet points 4 and B of the ring; if
there is any point of the circumference which at some time
is coincident with 4 or B, there will be a collision of sphere
and ring.

Substituting x, and y. from Egs. (3a) and (3b), relation
(6) becomes

(x +vt)Y/y2+y2 = R} (7)

Fig. 4. A coordinate frame is chosen so that the centers of sphere and ring
would meet at O; the motions of points 4 and B of ring and of the outer
surface of sphere are studied in order to find out whether they collide or
not.
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If the contracted circle collides with point A, there will
be a real solution to Egs. (7), (1a), and (1b). If there is a real
solution, sphere and ring do collide. Let us try it:

(=Ro + ve)Yv? + (vat)? = RS (8)

Using the value of vy given by (5), and making suitable
transformations, one obtains

[024 (1 = 0¥/c?)2]t2 = 2R t + v2RE/c2 = 0. (9)

This equation will have real solutions for ¢ if and only if
the value of A is non-negative, where

A= (2Rg.)? — 4[v2 + (1 = v¥c)vv2R3/c2.

If sphere and ring both have speeds smaller than ¢ (or if
both are tachyons), the expression given in (10) will always
be positive, as can be seen in its reduced form below:

A = 4RIH1 — v (1 — v2/c?). an

In common cases (v smaller than ¢) there will be two
solutions to Eq. (9), for t. The least solution gives the time
when a point of the circle will meet point A4 of the ring, and
so will give the time of collision between sphere and ring.
1t should be noted that, for any values of v, and v, there will
be a collision, if these speeds are smaller than ¢. So the
paradox is solved: the sphere will not pass through the ring,
as analyzed in the reference frame which, qualitatively, first
caused the trouble.

Perhaps there is a slip in all this: if the sphere were a little
smaller than the ring, we could not write relation (6), and
all that follows would be wrong. If this were the only
problem, the collision would be tangential, and the solution
of (9) would be unique; this would imply that A equals zero.
This can only happen if v. = 0 (the sphere at rest, with
center at O) or if some of the speeds equals ¢. In any of these
cases the sphere will pass through the ring, if it is a little
smaller. But these are limiting cases which do not interest
us. In any other case, a detailed analysis (omitted here)
leads to the conclusion that for any values of v, and v, there
will be a collision unless the radius difference is greater than
a certain function of v, and v.. This means that it is not
enough that the sphere be “a little bit smaller” than the ring;
it should be definitely smaller in order to pass through it.
In this case, analysis from the two other reference frames
will show the same result.

Not everything is solved by this mathematical analysis;
someone could say: “Well, you showed a fourth analysis
which does give the same results as the two former ones; but
you did not demonstrate that the first one was wrong, and
the contradiction is not undone.” This is true. We should
go back to the first argument and try to find an error
there.

Let us suppose that the sphere did really enter the ring,
and the situation is as shown in Fig. 2(b). Can the sphere
get out of the ring, or, in other words, can the ring rise so fast
as not to collide with the sphere? This deserves a detailed
examination. Let us first suppose that the sphere does not
have a very high speed, as compared with c. Then its con-
tracted radius

R = Ro(1 — v?/c?)1/2 (12)

can be computed, in second-order approximation, by
R = Ro(1 — v/2c?) (13)
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as can be seen expanding (12) in series. So at the instant
depicted at Fig. 2(b), the distance between the ring and the
sphere rim is

d=Ry— R = Rw?/2c? (14)

in the second-order approximation of (13).
The sphere will travel this distance in a time

t = dfv. = Rov/2c? (15)
and in this time the ring will rise a distance
d’ = vt = Rov.v,/2c2. (16)

Even if the ring rises at speed c, it can only rise to a distance
Rov./2c; and as v, is supposed to be small compared with
c, the ring can only rise a small fraction of the radius Ry
while the sphere traverses the distance which separates them
at time ¢ = 0. There will be a collision. So we cannot predict
qualitatively whether, starting from situation of Fig 2(b),
the ring will collide with the sphere or not; the analysis
presented in Sec. II was too vague to provide any definite
prediction. It seems that, if the speed of the ring were very
large, the sphere would not move much while the ring rises,
and no collision would follow. This is a real possibility; but
calculation shows that the ring must be superluminal (v,
> ¢), a condition already reached above.

It is interesting that we cannot give a clear qualitative
analysis of the situation which showed that collision cannot
be avoided. And in fact the sphere and ring paradox, as
presented here, can only be solved in a quantitative way. We
can prove this: if the contraction factor iy were not exactly
the one given in (5), the values of v, and v, could be so
chosen that a real contradiction would follow. Let us sup-
pose that the contraction factor is given by

y = (1 — koi/c?)\/2. 1mn

Applying this relation in (8) and going through steps
analogous to (9), (10), and (11), we reach to

A = 4RW2(1 — kvYe?)(1 — kv2/c?). (18)

If k is greater than 1, A can have negative values for a
suitable choice of v, and v,; and, in this case, no collision
would happen between sphere and ring. The analysis from
the point of view of the two other reference frames, corre-
sponding to Fig. 3(a) and 3(b) would not be changed by this
alteration of the equation of contraction; and the paradox
would remain.

If the study of collision conditions depends so critically
on the form of the Lorentz contraction equation, and fur-
thermore depends on geometrical conditions, one might be
tempted to find another form of the length paradox which
would lead to the discovery of a real contradiction in special
relativity. Now we shall prove that this will never hap-
pen.

IV. GENERAL ANALYSIS

Any modification of the length paradox must have this
form:
(a) There is a relative motion between a body and a hole.
(b) The analysis relative to one reference frame S shows
that the body may pass through the hole.
(c) The analysis from the point of view of another reference
frame S’ shows that the body cannot pass through the
hole.
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Someone may invent a paradox where length contraction
plays an important role, and where no object is intended to
pass through any hole; but the class of paradoxes which has
hitherto been called “length paradox” can be described by
the three above conditions. This can be called the general
form of “hole paradoxes.”

Any problem of this kind can be transformed to a colli-
sion problem: the two last propositions may be restated in
the form:

(b") There is no collision between the body and the contour
of the hole, as analyzed from reference frame S.

(c’) There is collision between body and the contour of the
hole, as analyzed from reference frame S’.

May such a paradox result from any situation studied in
the context of relativity theory? Yes, if we do not develop
the complete analysis, and apply just one or two theorems,
instead of the whole theory; but no contradiction can occur
if one applied Lorentz transformations, that is, the whole
of relativistic kinematics, instead of using just the Lorentz
contraction equation.

We will depart from proposition (¢’), and will show that,
if it is true, (b") must be false.

If there is a collision between body and the contour of the
hole, as analyzed from frame S”, then, at the time of colli-
sion, there is at least one point of the body which has the
same spacial coordinates as one point of the hole contour.
Let us call 4 and B, respectively, these material points, and
let the tetrad

¢’ = (x0.0.20.10) (19)

describe the event of collision of the points, relative to ref-
erence frame S”.

These space-time coordinates may be transformed to
frame S, by means of Lorentz transformations, if special
relativity applies to both referentials. Let the result of the
transformation be

e = (x0.y0.20.%0)- (20)

We want to prove that this tetrad represents a real event:
the collision of the same material points 4 and B of body
and hole contour, as viewed from frame S. But this is ob-
vious: if the description of the motion of point A, relative
to S’, says that it is at point

P’ = (x0.y0.20) )

at time #g, the description of the motion of the same point,
relative to S, will associate a position

(22)

to this point, at time ?, if the descriptions are to be rela-
tivistically coherent (because the same transformations
which apply to event coordinates apply to point coordi-
nates); the same may be said of point B; so, they both will
be at point P at time #¢, as viewed from frame S; and there
will be a collision, contradicting proposition (b’). So it is not
possible that the description of two motions, relative to one

P = (x0,00,20)
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frame, includes a collision and the Lorentz transform of this
description to another frame does not show the same colli-
sion (although at a different time and position). So the set
of propositions (a), (b"), (¢") contradicts relativistic kine-
matics, and such a paradox cannot happen in relativity. In
fact, this does not even depend on the form of the Lorentz
transformations: any one-to-one transformation of space-
time coordinates will prohibit the contradiction. So there
cannot be a length contradiction in general relativity, either,
as it is based on coordinate transformation.?

Could there be a contradiction if the Lorentz contraction
equation was used, instead of Lorentz transformations?
Yes. This happens if the analysis omits the correct time
transformations; if the fourth coordinate is not forgotten,
no contradiction may arise, because the Lorentz contraction
equation is derivable as a special case of Lorentz transfor-
mations, and so cannot contradict them.

Whoever does not believe this should try to find a new
length or hole paradox which shows a contradiction in rel-
ativity theory. We predict that such a paradox will be
solved—not because we have a blind faith in relativity, but
because the analysis of its structure shows this. We do not
ask everyone to stop thinking about such paradoxes. Al-
though they will never undermine relativity, they may be
didactly very instructive, and are worth studying.

V. SUMMARY

We have described a new thought experiment where a
qualitative analysis using Lorentz contraction and relative
rotation do not solve an apparent contradiction. The
quantitative analysis proves that there is no real contra-
diction, but also shows that, if the contraction obeyed a
slightly different law there would be a contradiction. A
general analysis then proves that any theory which includes
a one-to-one space-time coordinate transformation will
never be subjected to failure by any form of the length (or
hole) paradox; and so Lorentz transformations (not Lorentz
contraction) must, in general, be used to assure that special
relativity is length-paradox proof.

1The paradox has already been used as an April-first joke, by M. Gardner,
Sci. Am. 232, 127(1975), and has appeared in E. Taylor and J. A.
Wheeler, Spacetime Physics (Freeman, San Francisco, 1966).

2The original paradox was first stated by W. Rindler, Am. J. Phys. 29,
365(1961) and involved an analysis of the acceleration of the rod, which
then became curved as seen from one reference frame; uniform
transverse motion was studied by R. Shaw, Am. J. Phys. 30, 72(1962)
and by E. Marx, Am. J. Phys. 35, 1127 (1967).

3Einstein was well aware that the study of lengths and time intervals was
liable to great difficulties, but which no contradictions would arise in
a theory which was founded on coordinates and coordinate transfor-
mation; see his analysis of covariance and of reduction of physics to point
events in A. Einstein, “The Foundation of the General Theory of Rel-
ativity,” printed as a chapter of The Principle of Relativity (Dover, New
York, 1923), especially Chap. 3, p. 115.
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