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WAVE MECHANICS, FROM LOUIS 

DE BROGLIE TO SCHRÖDINGER: 

A COMPARISON 
 

Roberto de Andrade Martins 

 
Abstract: Erwin Schrödinger’s work on wave mechanics 

started in late 1925, stimulated by his study of Louis de 

Broglie’s thesis. It is well known that in his initial attempts to 

formulate a quantum theory of the atom Schrödinger tried to 

develop a relativistic theory, following de Broglie’s ideas, and 

only afterwards he looked for a non-relativistic wave equation. 

It is straightforward to derive the wave equation corresponding 

to de Broglie’s phase waves. both in the relativistic and non-

relativistic realms. In the case of his relativistic attempt, 

Schrödinger did indeed follow a simple approach, using de 

Broglie’s theory. In the non-relativistic approach, he attempted 

to produce an independent derivation of the wave equation, 

following several different lines, instead of using de Broglie’s 

results in the classical limit. This paper analyses Schrödinger’s 

derivations of the wave equation, showing the differences and 

similarities between his theory and de Broglie’s. It will be 

shown that, although it is formally possible to derive the wave 

equation from de Broglie’s theory, there is an incompatibility 

between the two theories: it would be impossible to make any 

sense of de Broglie’s ideas in the case of the rigid rotator, for 

instance. Schrödinger’s approach was, in this sense, 

independent and incompatible with de Broglie’s theory, and it 

could be easily applied to many different physical situations. 

This heuristic value of Schrödinger’s wave equation is another 

very important distinction between the two theories, since de 
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Broglie’s theory only led to a single new prediction: the wave 

behaviour of electrons in diffraction experiments. 

Keywords: Schrödinger, Erwin; de Broglie, Louis; wave 

mechanics; wave equation; quantum mechanics; history of 

physics 

1. INTRODUCTION 

The researches of Erwin Rudolf Josef Alexander 

Schrödinger (1887-1961) on wave mechanics started in late 

1925 as a development of his study of the 1924 thesis of Louis-

Victor-Pierre-Raymond de Broglie (1892-1987). It is well 

known that Schrödinger’s wave equation can be derived from 

De Broglie’s results, in the classical limit. From this point of 

view, one might think that Schrödinger’s theory seems a mere 

development of De Broglie’s theory. However, can we really 

accept that conclusion? 

This paper will compare some features of De Broglie’s and 

Schrödinger’s theories. It is well known that in his initial 

attempts to formulate a quantum theory of the atom Schrödinger 

tried to develop a relativistic theory, following de Broglie's 

ideas, and only afterwards he looked for a non-relativistic wave 

equation. It is straightforward to derive a wave equation for de 

Broglie's phase waves both in the relativistic and non-relativistic 

realms. In the case of his relativistic attempt, Schrödinger did 

indeed follow a simple approach, using de Broglie's theory. In 

developing the non-relativistic approach, however, Schrödinger 

attempted to produce an independent derivation of the wave 

equation, following several different lines, instead of using de 

Broglie's results in the classical limit.  

I will first discuss the historical influence of De Broglie’s 

work on Schrödinger; then, the early derivations of the wave 

equation, stressing the differences and similarities between the 

two theories. It will be shown that, although it is formally 

possible to derive a wave equation from de Broglie’s theory, 

there is an incompatibility between the two theories: it would be 

impossible to make any sense of de Broglie’s ideas in the case 
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of the rigid rotator, for instance. Schrödinger’s approach was, in 

this sense, independent and incompatible with de Broglie’s 

theory, and it could be easily applied to many different physical 

situations.1  

2. DE BROGLIE’S THEORY 

Louis de Broglie’s theory was first presented in a series of 

papers published in 1923-1924 (Broglie, 1923a, 1923b, 1923c, 

1923d; 1924a, 1924b, 1924c) and in his PhD thesis (Broglie, 

1924d; 1925). He took as a starting point the idea that all 

particles (electrons, light quanta, etc.) underwent some 

periodical process obeying both the relativistic and quantum 

energy equations E=h and E=mc², and used special relativity 

as the main theoretical tool of his work (Broglie, 1923a).2  

In the rest frame of the particle, one should have 

E0=m0c²=h0 and relative to other reference systems, the correct 

equation should be:  

E=mc²=h  (1) 

However, mass increases with speed, and frequency 

decreases with speed. Therefore, it seemed that the use of 

E=mc²=h would lead to a contradiction (Broglie, 1923a, pp. 

507-508). After dealing with this difficulty for a while, De 

Broglie recognised that his theory could only obey the special 

theory of relativity if he conceived all quanta as extended 

systems, instead of point particles.  

 
1 This work was written for presentation at the workshop “Quantum 

theory: historical studies and cultural implications”, held at the 

Universidade Federal da Paraíba, Campina Grande, Brazil, 15-17 

December 2008. A shorter Portuguese version has already been 

published (Martins, 2010), but this English version is now published 

for the first time. 
2 A detailed discussion of De Broglie’s work can be found in Martins 

& Rosa, 2014 (in Portuguese). 
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In his thesis he presented this fundamental idea in a very clear 

way. According to Maxwell’s electromagnetic theory, the 

energy of any charge (including an electron) is spread in the 

space around it, although it has a strong energy concentration 

around a centre. Following this idea, De Broglie regarded the 

electron as an infinite system (Broglie, 1925, pp. 33-34).  

In the rest frame of an electron, its whole (infinite) structure 

was supposed to be pulsating in synchrony, with a frequency 

given by h0=m0c². This periodic phenomenon, independent of 

space, could be described by an equation such as: 

( )000 2sen tA =  (2) 

Relative to other reference systems, the synchrony of this 

periodic phenomenon would be lost, of course, due to 

relativistic effects. The Lorentz transformation of time is: 
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where =v/c is the speed of the particle divided by the speed of 

light. 

Applying the Lorentz transformation of time to this 

pulsation, de Broglie easily showed that the oscillation would 

transform to a wave, relative to other reference frames, and 

obtained the speed, frequency and other properties of the wave 

(Broglie, 1925, pp. 35-36). Replacing t0 in (2) by (3), we get: 
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The general formula for a monochromatic wave travelling in 

the x direction is: 
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Comparison of equations (4) and (5) shows that the uniform 

pulsation of the electron (in its proper reference frame) becomes 

a monochromatic wave (the “phase wave”) relative to other 

reference systems; and by identifying the corresponding 

quantities in both equations, one obtains the frequency  and 

speed V of the wave associated to the electron: 

2

0

β1

ν
ν

−
=  

 

(6) 

v

2c

β

c
V ==  

 

(7) 

The electron should have some definite position, of course. 

Therefore, the uniform infinite wave cannot describe it 

completely. The moving free electron would be equivalent to an 

extended system with strong energy concentration around a 

centre, travelling at a speed v, and at the same time traversed by 

a monochromatic wave of speed V=c²/v and frequency 

=mc²/h.  

A modulated monochromatic wave is mathematically 

equivalent to a wave group, but conceptually it is quite different, 

because in the rest frame it does have a single, well-defined 

frequency, and it shouldn’t spread as it moves.  

3. MECHANICS AND OPTICS 

De Broglie presented his theory in several different ways. In 

some of his publications he emphasised the similarities between 

mechanics and optics (Broglie, 1924a; 1925, pp. 46-53). In the 

special theory of relativity, the Maupertuis’ principle of least 

action can be written as: 

0dxJδ

Q

P

i

i =  

 

(8) 
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where Ji are the components of the energy-momentum four-

vector. 

On the other hand, the relativistic version of Fermat’s 

principle can be written as: 

0dxOδ

Q

P

i

i =  

 

(9) 

where Oi are the components of the four-vector “universe 

wave”, with components corresponding to the wave number 

projections and the frequency of the wave. 

The analogy between the two principles (Fermat and 

Maupertuis) and the relation E=h then allowed De Broglie to 

establish a general relation in four dimensions: 

ii J
h

1
O =  

 

(10) 

which contain both E=h and p=h/ as special cases of the 

relativistic equation (Brown & Martins, 1984).  

4. ELECTROMAGNETIC FIELDS 

If the electron is moving in an electromagnetic field, its total 

energy (including the potential energy e) remains constant 

(Broglie, 1925, p. 60). De Broglie supposed that the frequency 

of the electron wave should be proportional to the total energy 

W, and therefore it would also be constant. 

eφ
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(11) 

However, the speed V of the waves and its wavelength would 

change from place to place, according to a very complex 

equation (Broglie, 1925, p. 60): 
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(12) 

In this equation, the momentum of the electron contains 

components proportional to the potential vector A, following 

Maxwell’s theory (Bork, 1967). 

De Broglie did not attempt to apply (11) and (12) to any 

specific situation. The only case of a bound particle he was able 

to deal with was the hydrogen atom (Broglie, 1923a, pp. 509-

510). He supposed that the centre of the electron obeyed 

classical mechanics and followed a Kepler path. He assumed 

that the wave would follow the same classical trajectory. 

Assuming that the wave should always be in phase with the 

electron oscillations (and not assuming that the wave should be 

stationary, as presented in textbooks), he proved that Bohr’s 

quantum rule for the angular momentum L=pr=nh/2 was a 

consequence of his own theory (Broglie, 1925, pp. 62-65). 

The only new prediction of De Broglie’s theory was electron 

diffraction (Broglie, 1923b, p. 549; 1925, p. 104), and this was 

soon confirmed. Experiments with high-energy electrons 

proved, in a few years, that the wavelength of the electron wave 

obeyed a relativistic equation, as predicted by De Broglie. 

5. THE EINSTEIN CONNECTION 

It is usually said that De Broglie’s thesis was only accepted 

due to Albert Einstein’s influence upon Paul Langevin (Mehra 

& Rechenberg, 1982, vol. 1.2, p. 604). This version, grounded 

upon De Broglie’s testimony, is not correct.  

Paul Langevin told Einstein about De Broglie’s work in July 

1924, and on July 27 he asked De Broglie to send a copy of his 

thesis (before it was approved) to Einstein (Wheaton, 1983, p. 

297; Darrigol, 1993, p. 355). However, there was no immediate 
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reaction from Einstein. De Broglie’s thesis was presented and 

approved on November 25. Only on December 16 Einstein 

wrote letters to Langevin and to Lorentz praising De Broglie’s 

work – “He has lifted a corner of the big veil” (Darrigol, 1993, 

p. 355; Mehra & Rechenberg, 1982, vol. 1.2, p. 604). On 

January 13 Langevin wrote a letter to De Broglie, telling him 

about Einstein’s favourable opinion (Wheaton, 1983, p. 297). 

At this time Einstein was working on the quantum theory of 

gases (now called “Bose-Einstein statistics”). In a paper 

published in February 1925 he remarked that De Broglie’s work 

might help to elucidate the meaning of the new theory (Jammer, 

1966, p. 249). 

Erwin Schrödinger read Einstein’s papers, and they 

exchanged letters about the quantum theory of gases (Hanle, 

1977; 1979). Stimulated by Einstein’s reference to De Broglie’s 

work, Schrödinger obtained a copy of the thesis and read it in 

October 19253. In November 1925 Schrödinger wrote letters to 

Einstein and to Landé showing that he was very excited with De 

Broglie’s ideas (Moore, 1989, p. 192). He applied De Broglie’s 

theory to gases in a paper he finished in December 1925 (Hegt, 

1997, p. 474). However, he found some features of De Broglie’s 

theory difficult to understand or to accept – especially the theory 

of the hydrogen atom.  

On November 23, 1925, Schrödinger presented a seminar on 

De Broglie’s ideas (Moore, 1989, p. 192). At that occasion, 

Peter Debye remarked that De Broglie’s approach was childish 

and that it was necessary to use a wave equation to describe the 

wave in three dimensions (Kragh, 1982, p. 157). Schrödinger 

agreed that the waves should be dealt with in another way, in 

the case of the hydrogen atom. He also noticed that the waves 

 
3 According to Heitler (1961, p. 222) many other physicists studied 

De Broglie for the same reason, but nobody – except Schrödinger – 

took the idea of waves associated to electrons seriously. See Raman 

& Forman’s analysis of Schrödinger’s peculiar attitude towards De 

Broglie’s work (Raman & Forman, 1969).  
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in nearby Keplerian orbits would produce a distorted wave 

front, therefore De Broglie’s approach was too simplistic.  

In December 1925 Schrödinger began his attempts to 

produce a wave equation from De Broglie’s theory and to apply 

it to the hydrogen atom. Instead of waves following Keplerian 

orbits he began to think about standing waves in three 

dimensions, analogous to sound waves in cavities. Quantization 

should arise as a consequence of the discrete spectrum of 

standing waves in the atom. 

6. SCHRÖDINGER’S RELATIVISTIC WAVE 

EQUATION 

Some decisive steps were made around Christmas, during 

Schrödinger’s stay in Villa Herwig, in the Alps, where he spent 

two weeks with a mysterious lover (Moore, 1989, pp. 194-195). 

Schrödinger first tried to produce a relativistic wave equation, 

following De Broglie’s approach (Kragh, 1982, pp. 175-178). 

This derivation was not published but it can be found in a 

manuscript, probably written in late December 1925 (Mehra & 

Rechenberg, 2001, vol. 5.1, pp. 423-430). Let us present a 

reconstruction of Schrödinger’s first derivation of the wave 

equation (Kragh, 1982, p. 180; Kragh, 1984).  

The general wave equation, valid both in classical and 

relativistic physics, is: 

0ψ
λ

2π
ψ

2

=







+  

 

(13) 

For any monochromatic wave =V/, therefore the general 

wave equation can also be written as a function of the speed of 

the wave and its frequency:  

0ψν4πψ 222 =+V  (14) 

In De Broglie’s theory, V = E/p  where E is the total energy 

of the electron: 
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E = h = mc²  – e = (m0c²)/(1–²)1/2 – e (15) 

If magnetic fields are disregarded, the momentum p is: 

p=mv=(m0c)/(1–²)1/2 (16) 

Since the total energy of the electron is equal to h (eq. 15,) 

it is possible to obtain v=c as a function of . Substituting this 

result in the equations for E and p one can compute the wave 

velocity V = E/p as a function of the frequency . After some 

manipulation, the general wave equation (13) becomes: 

( )  0ψφψ
4π
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2

2

22

=−−+ cmeE
ch

 

 

(17) 

This is the so-called “Klein-Gordon equation”. 

Notice that Schrödinger’s derivation of the relativistic wave 

equation depends only on results that had already been obtained 

by De Broglie. Indeed, De Broglie himself did also arrive to the 

same result, independently (Kragh, 1984, p. 1025).  

Schrödinger applied this wave equation to the hydrogen atom 

and obtained wrong results for the energy levels (Jammer, 1966, 

pp. 257-258; Mehra & Rechenberg, 2001, vol. 5.1, pp. 367-

368). After struggling for a short time with the relativistic theory 

he turned to a non-relativistic approach.  

7. THE CLASSICAL WAVE EQUATION 

Obtaining a wave equation in the classical approximation is 

much easier than in the relativistic case, and many textbooks 

present such a derivation.  If one accepts the relation =h/p 

between momentum and wavelength and applies classical 

dynamics, one obtains:  

v
λ
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h

p

h
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(18) 

In classical mechanics, the kinetic energy K is: 
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Therefore, the square of wavelength, in the classical limit, is: 
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(20) 

The general (classical and relativistic) wave equation is: 
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(21) 

Replacing ² in (21) by the expression in (20), one obtains:  
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(22) 

This is the so-called Schrödinger equation independent of 

time. Therefore, using only classical mechanics and De 

Broglie’s relation =h/p it is possible to derive the Schrödinger 

wave equation. Notice that this derivation is very similar to 

Schrödinger’s relativistic derivation shown above, but much 

simpler. However, Schrödinger did not use this very simple 

derivation. How did Schrödinger present the wave equation in 

his early papers?4 

8. THE WAVE EQUATION IN SCHRÖDINGER’S 

FIRST PAPER 

In his first 1926 paper Schrödinger presented the wave 

equation as a consequence of the Hamilton-Jacobi approach, in 

a very abstract way (Schrödinger, 1926a, pp. 361-362; 1929, pp. 

 
4 I will not discuss here how Schrödinger arrived to his equation. The 

published papers do not present his ideas as they were really 

developed (Kragh, 1982, p. 158). What interests me is how 

Schrödinger chose to publish his results and what could be his 

motivation for presenting them exactly in this way. 
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1-2). He introduced an unknown function  and stated that the 

action S could be written as 

S = K log  (23) 

The Hamiltonian function H could therefore be written as: 

E
K

qHqH =











=













q

Ψ

Ψ
,

q

S
,  

 

(24) 

Schrödinger then stated that in the non-relativistic case, this 

equation “can always be transformed so as to become a 

quadratic form (of  and its derivatives) equated to zero” 

(Schrödinger, 1926a, pp. 361-362; 1929, p. 1), and in the case 

of the hydrogen atom (a Coulombian field) this would become: 
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(25) 

This is just the classical equation of energy conservation 

p²=2m(E-V), since the three first terms correspond the squared 

momentum divided by (K/), according to (24). 

Schrödinger than stated (Schrödinger, 1926a, p. 362; 1929, 

p. 2): “We now seek a function  such that for any arbitrary 

variation of it the integral of the said quadratic form, taken over 

the whole co-ordinate space, is stationary [...]”. The 

corresponding equation is: 
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(26) 

From this variational problem Schrödinger derived the wave 

equation for the hydrogen atom: 
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This derivation presented in Schrödinger’s first 1926 paper 

is completely meaningless, since  was an undefined function 

and (26) is not a valid variational principle in classical physics5. 

Its only “justification” is that the wave equation leads to the 

correct energy levels of the hydrogen atom, carefully derived in 

the rest of the same paper (Schrödinger, 1926a, p. 362-374; 

1929, pp. 2-10). 

9. THE DERIVATION IN SCHRÖDINGER’S SECOND 

PAPER 

Schrödinger himself was not satisfied with this “derivation”, 

and presented a very different one in his second 1926 paper 

(Schrödinger, 1926b; Schrödinger, 1929, pp. 13-40), where he 

presented for the first time the time-independent wave equation 

(m=1)  

0U)Ψ(E
h

m8π
ΔΨ

2

2

=−+  

 

(28) 

We present here a reconstruction of his derivation, stressing 

only its main points.  

Schrödinger’s fundamental assumption was the general 

(classical) wave equation in this form (Schrödinger, 1926b, p. 

510; Schrödinger, 1929, p. 27)6: 

 
5 “The first published derivation [...] was not only curiously formal, 

but straighforwardly cryptical. On the whole this derivation appears 

badly justified, its sole foundation lying in its result [...]” (Kragh, 

1982, p. 158). 
6 Instead of the usual symbol for the Laplacian operator used here, 

Schrödinger wrote div grad.  
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(29) 

Schrödinger had already obtained (Schrödinger, 1926b, pp. 

494-498; Schrödinger, 1929, pp. 16-20) the equation of the 

speed of the wave (m=1): 

( ) ( )Vh

h

VE

E

dt

ds
u

−
=

−
==

ν2

ν

2
 

 

(30) 

Now, assuming that the wave function  has the same form 

it usually has in classical physics (Schrödinger, 1926b, p. 510; 

Schrödinger, 1929, p. 27): 
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By replacing (32) and (30) in (29) one obtains at once 

Schrödinger’s wave equation (m=1) : 
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(33) 

Since E=h, it may also be written as (Schrödinger, 1926b, 

p. 510; Schrödinger, 1929, p. 27): 
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(34) 

Therefore, in this derivation presented in Schrödinger’s 

second 1926 paper, the only non-classical assumptions are 

E=h and the formula for the speed u of the waves associated 

to the electron (30) that corresponds to the classical limit of De 

Broglie’s relation u=E/p.  
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However, Schrödinger did not take the formula for u from De 

Broglie’s work. He presented his own, original and highly 

abstract derivation of this relation, using the analogy between 

the principles of Huygens and Hamilton (Schrödinger, 1926b, 

pp. 494-498; Schrödinger, 1929, pp. 16-20). He referred to De 

Broglie’s work in this paper, but stressed that his own results 

were obtained in a more general way, and independently of the 

theory of relativity. After presenting his own derivation, he 

remarked: 
 

We find here again a theorem for the ‘phase waves’ of the 

electron, which Mr. de Broglie had derived, with essential 

reference to the relativity theory, in those fine researches to 

which I owe the inspiration for this work. We see that the 

theorem in question is of wide generality, and does not arise 

solely from relativity theory, but is valid for every 

conservative system of ordinary mechanics. (Schrödinger, 

1926b, p. 498; Schrödinger, 1929, p. 20) 

 

So, Schrödinger could have used De Broglie’s work to derive 

the wave equation in the non-relativistic case, but he did not do 

that. He used a formula for the speed of the wave associated to 

the electron that is equivalent to De Broglie’s, but he provided 

a new derivation of this relation – seemingly because he wanted 

to prove that it was valid independently of relativistic 

considerations. 

10. SCHRÖDINGER’S AND DE BROGLIE’S THEORIES 

We might justify Schrödinger’s careful avoidance of 

grounding his own work upon De Broglie’s theory in the 

following way. He had first attempted to use the relativistic 

approach, and it failed; besides that, the wave equation that did 

lead to correct results is not the classical limit of the relativistic 

wave equation. Therefore, it was appropriate to present a 

derivation completely independent of De Broglie’s relativistic 

theory, to ensure that his own theory was well grounded. 

Probably this was part of his motivation. However, there are 
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other relevant issues, since there are several deep differences 

between the two theories.  

De Broglie’s work was grounded upon special relativity, and 

its main equations could only be deduced for electrons in 

uniform motion, since he took as his starting point the 

description of the pulsation of the extended electron in its rest 

frame. Its extension to accelerated motion required a new way 

of thinking, and a different justification. De Broglie did attempt 

to provide a basis for his theory in the case of accelerated motion 

using the analogy between the principles of Maupertuis and 

Fermat – that are valid only for single particles and wave rays. 

This led him to a general relation between the wave properties 

and the mechanical properties of the electron moving in an 

electromagnetic field. However, De Broglie’s electron still 

described a definite trajectory and the associated wave could be 

described by wave rays – an approximation which is adequate 

in describing phenomena corresponding to geometrical optics, 

but completely inadequate for the analysis of diffraction and 

interference. He successfully applied his ideas to the hydrogen 

atom, but he was unable to study the harmonic oscillator and 

other simple systems. De Broglie’s concept of the electron could 

not be adequately applied when the dimensions of the system 

was comparable to the wavelength (as in the case of the atom). 

It was also difficult to perceive how his theory could be applied 

to a system with many particles. Besides that, his theory would 

be meaningless for a rigid rotator, for instance.7  

Schrödinger’s approach was much more general than De 

Broglie’s. His derivations did not depend on the theory of 

relativity and therefore he could directly address the case of 

accelerated and rotating systems. Besides that, in the derivation 

presented in his second 1926 paper (Schrödinger, 1926b, 490-

491; 1928, p. 14) he presented his own theory in a very general 

 
7 The discussion of the quantum rigid rotator was very important in 

the theory of specific heat of poliatomic gases. This problem was 

addressed by Schrödinger in his second 1926 paper. 
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way, using general coordinates (therefore opening the 

possibility of applying it to rotation and other types of motion) 

and discussing a general conservative system (that is, he did not 

restrict his treatment to a single particle). His general and 

abstract way of approaching the problem allowed him to apply 

the wave equation to any physical system. 

In his second paper, Schrödinger used the analogy between 

the principles of Huygens and Hamilton (not Fermat and 

Maupertuis, as De Broglie did), and that step ensured that the 

relation could be carried to cases where the dimensions of the 

system were comparable to the wavelength.  

For those reasons, only Schrödinger’s theory could be 

directly applied to waves associated to one or more electrons in 

three dimensions (atomic systems), to the harmonic oscillator 

and to rotating solids, as he did (Schrödinger, 1926b). 

11. CONCLUSIONS 

Schrödinger’s wave equation can be derived from De 

Broglie’s results, in the classical limit. However, Schrödinger’s 

theory is not an application or development of De Broglie’s 

theory. 

Schrödinger’s theory can be applied to cases where De 

Broglie’s theory cannot be applied, such as accelerated motion 

and rotation, and for bound particles where the wavelength is 

comparable to the dimensions of the region containing the 

electron. Even in the case of a free particle they are also 

incompatible: De Broglie’s relativistic wavelength was 

confirmed by diffraction experiments, and Schrödinger’s 

classical wavelength is simply wrong, for high speeds.  

The heuristic value of Schrödinger’s wave equation is 

another very important distinction between the two theories, 

since de Broglie’s theory only led to a single new prediction: the 

wave behaviour of electrons in diffraction experiments. There 

are also other differences between the two approaches that 

cannot be described here. 
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Although De Broglie’s theory was the starting point of 

Schrödinger’s work and had a very important heuristic role in 

this respect, the two theories are different, independent and 

incompatible.  
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