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Abstract: This paper presents Hermann van Helmholtz’ 

approach to measurement theory, and discusses the possible 

uses and implications of his views in science education. This 

approach opposes the “black box” attitude towards 

measurement (operationalism). It takes into account the a priori 

conditions that should be imposed upon measurement 

procedures to obtain results that conform to some basic 

mathematical properties of physical magnitudes. Instead of the 

discredited but still popular empiricist view that the scientist 

should observe nature without any preconceived ideas, 

Helmholtz’ theory of physical magnitudes shows that in basic 

measurement procedures it is necessary to introduce theoretical 

considerations. At the same time, this does not introduce a 

vicious circle in experimental testing. 
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1. INTRODUCTION 

Among physicist and other scientists, the phrase 

“measurement theory” is usually associated to operationalism, 

inductivism and the study of random errors. Measuring 

instruments and, in general, scientific instruments, are regarded 

as “black boxes” that produce readings when applied to physical 

systems. The measuring instrument “defines” a physical 
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magnitude. Therefore, when two different instruments (or 

methods) are applied to the same object, they can produce 

different results, because they are not measuring the same 

property. 

Every physics student learns that measurement is one of the 

most important activities in the physics laboratory. In the 

educational laboratory, measuring apparatuses are used to 

obtain measurements; they are instruments, and therefore they 

are never the subject of study in the physics lab. Textbooks 

about measurement and laboratory techniques usually dedicate 

a few paragraphs to systematic errors. Only random errors 

deserve a detailed study. 

In this context, it is not clear what meaning can be ascribed 

to questions such as: Is the measuring instrument working 

properly and measuring what it was intended to measure? If a 

physical magnitude is defined by its measuring method, it is 

impossible to criticise or improve the method. If distances are 

measured (and operationally defined) by the instruments that 

measure distance, it is meaningless to ask whether the ruler 

measures distances correctly or not. 

Measurement devices are not, however, blindly made 

instruments. Also, it is not necessary to have a blind faith in their 

performance. It is possible to analyse and test measurement 

instruments; and there is a general theory of measurement 

instruments and a general theory of systematic errors that can be 

useful in real-life laboratory. 

However, the required background is not operationalism, but 

a completely different approach. Before the advent of 

operationalism in the early 20th century, there was already a 

deeper analysis of measurement theory provided by Hermann 

von Helmholtz (1821-1894) in 1887. This approach takes into 

account the a priori conditions that should be imposed upon 

measurement procedures in order to obtain results that conform 

to some basic properties of physical magnitudes. Helmholtz’ 

approach was followed and developed by Norman Robert 

Campbell (1880–1949) in 1920. In more recent times, one can 
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find an excellent textbook on this subject written by a 

philosopher: Brian David Ellis (1968).  

This paper will present a short account of Helmholtz’ 

approach to measurement theory, and will discuss the possible 

uses and implications of this approach in physics education.1  

2. HELMHOLTZ’ CONTRIBUTION 

Hermann von Helmholtz’ famous analysis of measurement is 

contained in his essay Zählen und Messen erkenntnis-

theoretisch betrachet (Helmholtz, 1887). That writing was part 

of Helmholtz’ discussion of Kant’s views on the relations 

between science and experience. In some former papers, 

Helmholtz had argued that the axioms of geometry are not 

propositions given a priori, but rather that they are to be 

established or refuted through experience. In a similar vein, in 

his 1887 essay he discussed the axioms of arithmetic and 

attempted to unravel their empirical content.  

The first part of Helmholtz’ essay is dedicated to the 

discussion of number, arithmetic and counting. In the second 

part of his essay, he discusses measurement.  

Helmholtz presented the following traditional axioms of 

arithmetic2: 

 

Axiom I. If each of two magnitudes is equal to a third, they are 

equal to each other. 

Axiom II. Associative law of addition: (a+b)+c=a+(b+c) 

Axiom III. Commutative law of addition: a+b=b+a 

Axiom IV. Equals added to equals give equals. 

 
1 This paper was presented at the Eighth International History, 

Philosophy, Sociology & Science Teaching Conference, University 

of Leeds, England, July 15 to 18, 2005. It is published here for the 

first time. I had previously published two papers that addressed some 

facets of the subject (Martins, 1984a; Martins, 1984b). 
2 Helmholtz proposed an additional axiom (Axiom VI): If two 

numbers are different, one of them must be higher than the other. 
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Axiom V. Equals added to unequals give unequals. 

 

A large part of Helmholtz’ paper is devoted to the discussion 

of those axioms and the mathematical concept of number. He 

shows, for instance – following Hermann and Robert 

Grassmann – that it is possible to reduce axioms II and III to 

another one, namely, (a+b)+1=a+(b+1). This part of his essay 

will not be discussed here. Let it be said, however, that his 

approach to the foundation of arithmetic was regarded as naïve 

by most mathematicians of that time, and that this field of 

investigation soon gained rigour and clearness. Dedekind, 

Cantor and Frege despised Helmholtz’ approach that mixed up 

mathematics with empirical issues (Darrigol, 2003, pp. 518, 

557-561). 

In the second part of his work, Helmholtz introduced the 

concept of magnitude: “Objects or attributes of objects, which, 

when compared with similar ones, permit the distinction of 

greater, equal, or smaller, we call magnitudes” (Helmholtz, 

1930, p. 17). In some cases (but not always) it is possible to 

ascribe numbers to magnitudes. “The procedure whereby we 

find the denominate number we call the measuring of 

magnitudes” (Helmholtz, 1930, p. 17).  

Under what conditions can numbers and their operations be 

applied to the relations of real objects and their magnitudes? He 

reduced this problem to two simpler ones: the empirical 

meaning of equality and of addition of magnitudes. 

 
1. What is the objective meaning of declaring two objects 

in a certain relation equal? 

2. What character must the physical combination of two 

objets have in order that we may consider comparable 

attributes of the same as united additively and these attributes 

accordingly as magnitudes which can be designated by 

denominate3 numbers? (Helmholtz, 1930, p. 4) 

 

 
3 “Denominate” numbers are those accompanied by units. 
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2.1 The comparison of two magnitudes 

The first point Helmholtz elucidates is the meaning of 

equality (or inequality) as applied to the attributes of objects. If 

we apply to this concept (physical equality) the same properties 

that he had already described in the case of numbers, then the 

new concept must obey the following properties:  

(P1) if a=b then b=a (symmetry) 

(P2) if a=c and b=c then a=b (transitivity) 

Now, suppose we have a method for comparing some 

attribute of different objects (for instance, their size or weight). 

If we compare objects A and B and conclude that some of their 

attributes (size, weight, etc.) are equal, we should expect that the 

comparison of B and A will also lead to the same conclusion, by 

(P1).  

Suppose, for instance, that we compare the weights of two 

bodies using the kind of balance that was employed in the 19th 

century. If the two bodies A and B are in equilibrium, we 

conclude that their weights are equal. If we exchange the 

positions of A and B, the balance must remain in equilibrium. If 

this does not occur, the instrument is inadequate (Helmholtz, 

1930, pp. 19-20).  

Helmholtz pointed out that the second property (P2) does 

also have an empirical meaning (Helmholtz, 1930, p. 20). If we 

use a two-pan balance to compare the weights of A and C and 

we observe that they equilibrate each other; and if B and C do 

also equilibrate each other; we should expect that A and B will 

also equilibrate each other. If that does not occur, the instrument 

is inadequate.  

Therefore, properties (P1) and (P2) can be used to test 

comparison instruments. A “correct” instrument should pass 

tests grounded upon properties (P1) and (P2). Of course, it is not 

possible to prove that the instrument is correct, but it may be 

possible to find out that it is incorrect. Those properties 

determine what physical relations we can recognise as relations 

of equality (Helmholtz, 1930, p. 22).  
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When a given comparison procedure is proposed and tested, 

the results can conform to the expected results (taking into 

account the mathematical properties of equality) or they may 

fail to conform to the predicted results. In the second case, the 

comparison procedure is rejected. However, in principle, the 

mathematical properties of equality might as well be rejected. 

Why they are never put to test? Because we have a preconceived 

(a priori) idea of mathematical equality which does not come 

from experience and that will not be invalidated by any 

observation. 

Notice that Helmholtz introduced comparison methods in a 

way that precedes and is independent of ascertaining the value 

of the corresponding magnitudes. In our time, if we ask someone 

who is not familiar with measurement theory how could he/she 

determine whether two objects have the same length or weight, 

the most likely answer would be that we should measure both 

objects and compare their measurements. However, there are 

procedures which are prior to measurement proper and that 

allow us to compare objects as regards some specific quantities. 

We can see whether two persons are equally tall without 

measuring their sizes, by putting them side by side. We can test 

whether two bodies have the same weight by putting them on 

the two pans of an equal-arm balance, and checking whether the 

balance remains in equilibrium or not. This is a fundamental 

idea, that should be stressed in elementary physics courses. 

2.2 Physical addition of two magnitudes 

Mere comparison of two magnitudes can show whether they 

are equal or unequal, but does not provide measurements 

(numbers) to those magnitudes. If we are to describe those 

magnitudes by numbers, and if those numbers are to be used in 

arithmetical operations, they must obey some conditions. As the 

basis of all arithmetical operations is addition, Helmholtz first 

analysed “under what conditions we can express a physical 

combination of magnitudes of the same denomination as an 

addition” (Helmholtz, 1930, p. 22).  
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We add the lengths of two bodies by placing one of their ends 

in contact with each other and by putting the contact point and 

their ends in a straight line (Helmholtz, 1930, p. 23). In the case 

of weights, the physical combination of A and B is a mere 

juxtaposition of the two objects (Helmholtz, 1930, p. 22). It does 

not matter if the two objects are put side by side, or one on the 

top of the other, or slightly separated. If we put the two objects 

on one pan of a two-pan balance, they will always be 

equilibrated by the same object C on the other pan. Therefore, 

the physical combination of two objects as regards their weights 

does obey a law similar to the commutative law of addition (P3): 

a+b=b+a. 

This is, of course, an empirical finding. If A on the top of B 

equilibrated C, but B on the top of A did not equilibrate C, then 

the physical combination of A and B as regards their weight 

would not be a mere juxtaposition of the two objects. That is: a 

given rule of physical combination of magnitudes can be tested 

by comparing it to the properties of numbers. If the rule does 

not pass the test, it is an inadequate rule and should be rejected.  

For other properties, the physical combination that produces 

the addition of their magnitudes is different.  

 
We add resistances when we unite the wires one after the 

other so that the electricity conducted through them must flow 

through each successively. We add conductivity of the wires 

when we put the wires side by side and unite all their 

beginnings and also all their ends. (Helmholtz, 1930, p. 25) 

 

It is possible to apply several tests, using other laws of 

arithmetical addition, such as the axiom “equals added to equals 

give equals” (P4): if a=b and c=d then a+c=b+d. That is, if 

bodies A and B are equal as regards their weight, and C and D 

do also equilibrate, then we should expect that the combination 

of A+C will equilibrate B+D. Also, if A+C equilibrates another 

body E, then we should expect that A+D, B+C and B+D should 

also equilibrate E. If that does not occur, then either the 

comparison rule (the balance) or the combination rule (the 
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juxtaposition of objects) is inadequate. If all those properties are 

obeyed, then the combination rule can be (temporarily) accepted 

as an adequate physical counterpart of arithmetical addition. 

 
A physical method of combining magnitudes of like kind 

can then be regarded as addition, if the result of the 

combination, compared as magnitudes of the same kind, is not 

changed, either by the interchange of single elements or by 

the exchange of members of the combinations with equal 

magnitudes of the same kind. (Helmholtz, 1930, p. 24) 

 

It is not possible to apply this analysis to some other 

magnitudes, such as temperature and density, because when we 

join two objects with temperatures (or densities) A and B, the 

temperature (density) of the system does not become C=A+B.  

Notice that we can physically add many (but not all) physical 

magnitudes. It is possible to add the volumes of two non-

reacting liquids by putting them in the same vessel; it is possible 

to add the resistances of two pieces of wire joining them in 

series; it is possible to add potential differences in the same way. 

It is possible to add currents by joining parallel wires. It is 

possible to add the intensities of two incoherent radiation 

sources by their simultaneous action upon the same surface. 

Using those properties, it is possible to test the linearity of 

instruments that measure volume, resistance, potential 

difference, electric current, radiation intensity, etc.  

Remark that there is an empirical component and an a priori 

component in the process of physical addition. According to our 

concept of physical magnitudes, we have need of associating 

numbers to magnitudes and to perform arithmetical operations 

with them. This would be pointless if there was no relationship 

between arithmetical operations and physical properties. It is 

meaningless, for instance, to perform arithmetical operations 

with telephone numbers. It is meaningful, however, to perform 

arithmetical operations with length measurements.   

In the case of several physical magnitudes, it is possible to 

find physical operations that obey the same properties as 
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arithmetical addition. For instance: if we join two objects 

together, the weight of the new (compound) object is the sum of 

the masses of the two objects. This property was not derived 

from measurement: it is an a priori requirement imposed upon 

measurement. Any balance (even the most expensive model of 

a beautifully illustrated catalogue) that refuses to obey this law 

of addition of weight should be rejected as inexact. However, it 

is an empirical matter to check whether this addition rule does 

really obey the same rules as the arithmetical addition. 

If we know how to compare two magnitudes of the same kind 

without measuring them, and if we know how to add two 

magnitudes of the same kind by joining two physical systems in 

a specific way, then we can create a measurement procedure for 

that magnitude. The typical instance is again provided by the old 

equal-arms balance together with a set of standard weights. It is 

possible to combine the standard weights and it is possible to 

compare their combination to any given body. In that way, it is 

possible to ascribe numbers (measurements) to those bodies.  

3. PRECEDENTS OF HELMHOLTZ’ WORK 

Olivier Darrigol published a detailed analysis of the authors 

who probably influenced Helmholtz’ theory of measurement, 

and the influence exerted by Helmholtz’ ideas (Darrigol, 2003).  

Helmholtz was inspired by mathematicians such as the 

Grassmann brothers, Hermann and Robert and Paul Du Bois-

Reymond and by physiologists / psychologists who discussed 

the possibility of measuring psychological quantities (Darrigol, 

2003, pp. 520-541). He was probably influenced by Ernst Mach 

and James Clerk Maxwell, too. There are several similarities 

between Maxwell´s previous discussion of measurement of 

electric charge and temperature and Helmholtz’ ideas (Darrigol, 

2003, pp. 541, 548).  

In his Theory of heat (1871) Maxwell discussed the 

measurement of temperature and emphasized that the equality 

between the temperatures of two bodies is a concept more 

fundamental than the value of their temperatures, and that it can 
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be ascertained by putting the two bodies in contact and checking 

whether there was any heat flow from one to the other. 

However, if this test is to be used for ascertaining equality of 

temperature, it must obey a testable law: if the temperatures of 

A and B are equal to the temperature of C, then the temperatures 

of A and B should also be equal. If a piece of iron is plunge in a 

vessel of water and it is noticed that they are in thermal 

equilibrium; and if the same piece of iron, being transferred to a 

vessel full of oil, is observed to be in thermal equilibrium with 

the oil; than it is possible to predict (and to check) that the water 

and the oil will be in thermal equilibrium (Darrigol, 2003, p. 

542). Nowadays this law is sometimes called “the zeroth law of 

thermodynamics”. It is seldom ascribed to Maxwell, and its 

relation to the general theory of measurement is never 

mentioned.  

Maxwell also remarked that it is impossible to add two 

bodies at temperatures P and Q producing a third body at the 

temperature P+Q. If there were such a procedure, then it would 

be possible to measure temperatures in the same way we 

measure mass or length.  

Although there were some precedents to the ideas presented 

by Helmholtz, as was shown above, it seems that his essay was 

the first systematic discussion of the measurability of physical 

properties (Darrigol, 2003, p. 516). 

4. CAMPBELL’S CONTRIBUTION 

Helmholtz’ analysis is very useful to check basic 

measurement procedures in order to detect systematic errors. In 

his paper, Helmholtz did not discuss random errors. Also, he did 

not analyse other kinds of measurement, that apply to 

magnitudes for which there is not a procedure of physical 

addition (such as density). Norman Campbell, in his 1920 book 

Physics, the elements, presented a more detailed (and, in some 

senses, more satisfactory) account of measurement. In his book, 

Campbell never referred to Helmholtz; however, directly or 

indirectly, he certainly suffered his influence. 
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Campbell introduced the name “fundamental measurement” 

to characterize the direct measurement procedures (those that do 

not depend on the measurement of other quantities), which are 

grounded upon comparison and physical addition (Campbell, 

1957, pp. 277-278) – that is, those that were studied by 

Helmholtz. Of course, Helmholtz knew (and stated) that some 

quantities (such as temperature and density) cannot be measured 

in the same way as weight or length, because there is no known 

way of producing the physical addition of two systems as 

regards those properties. However, Helmholtz did not give 

names do the different cases, nor did he elucidate other forms of 

measurement. Campbell distinguished several cases, and gave 

the name of derived measurement to the measurement of 

quantities such as density. 

Instead of a relation of equality between two quantities, 

Campbell used another comparison relation, that of greater 

than, or smaller than. The physical order relation must be a 

transitive and asymmetrical relation, as the corresponding 

mathematical relation – and it is possible to test whether a given 

physical comparison method does obey or does not obey those 

properties (Campbell, 1957, pp. 270-274).  

Helmholtz did not discuss random errors and the difficulty 

they introduce in fundamental measurement. It may happen that 

some comparison method shows that A and B are equal (relative 

to some magnitude), and that B and C are also equal, but A and 

C are different. In order do deal with this situation it is necessary 

to introduce the concept of errors of measurement (or 

uncertainty). The comparison between two objects can only lead 

to the result that their difference is smaller than the error of 

measurement, but cannot establish that they are equal. Campbell 

developed the analysis of measurement taking into account the 

existence of errors (Campbell, 1957, chapter 16), while 

Helmholtz did not.  

Although there are relevant differences between Campbell’s 

and Helmholtz’ approaches, both authors emphasise that the 

fundamental measurement of physical magnitudes involves 



Roberto de Andrade Martins 

 

148 

operations that must obey a set of laws isomorphic to those of 

arithmetic4; and that it is possible to check whether a given 

operation (or instrument) does obey such a law, so that 

systematic errors (or “methodical errors”, according to 

Campbell) can be eventually found.   

If we take into account random errors, Helmholtz rules must 

be corrected. Suppose we measure the weight of two objects 

using a balance, and that their measurements are repeated 

several times, and their weights are Aa and Bb. When both 

objects are put together on the balance pan, we should obtain a 

weight C compatible with (A+B) (a²+b²)1/2. Otherwise, we 

should conclude that the balance has a systematic error, since it 

is unable to add. 

In the same way, suppose we measure the thickness of two 

plates using a micrometer, and obtain the values Aa and Bb. 

When both plates are put together and measured with the same 

micrometer, we should obtain a thickness Cc compatible with 

(A+B)(a2+b2)1/2. 

It would be possible to present many other relevant features 

of Helmholtz’ and Campbell’s theories of measurement. Those 

that were shown here are sufficient, however, to exhibit the 

central ideas of this approach to measurement theory. 

5. THE EDUCATIONAL USE OF MEASUREMENT 

THEORY 

The discussion of these and other fundamental issues 

concerning the theory of physical magnitudes and their 

measurement can be introduced in our teaching practice and 

 
4 As a matter of fact, there is not an isomorphism between the physical 

quantities of the objects and arithmetic, but a weaker kind of 

morphism. Those distinctions will not be introduced here, however. 

They are discussed in several works in the mathematical tradition of 

measurement theory, beginning with Patrick Suppes (1951). A nice 

historical analysis of measurement theory which discusses those 

issues can be found in José Díez (1997). 
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brings a new light to experimental science. Instead of the 

discredited but still popular empiricist view that the scientist 

should observe nature without any preconceived ideas, the 

theory of measurement shows that it is necessary to introduce 

theoretical considerations in basic measurement procedures. In 

addition to random errors there are other kinds of errors, and 

there is a theory about the way instruments should behave that 

allow us to test them and to impose some conditions before we 

adopt a measuring instrument.  

It is necessary to remark that the idea that there is a theory 

underlying our measuring instruments is indeed generally 

recognized nowadays. This truism is part of the post-modern 

philosophy of science and is usually presented as an argument 

against the objectivity of quantitative science. If theories are 

needed to build measurement instruments, then the 

measurements obtained with the use of those instruments are 

influenced by theory, and cannot be used to test a theory, 

because this would entail a vicious circle: the theory should be 

accepted because it was confirmed by some measurements, and 

the measurements should be accepted because they are 

grounded upon the theory.  

There is no vicious circle, however, because the theory under 

the measurement apparatus is not the same theory that is 

assessed with the use of that apparatus. There are testable 

physical laws underlying the functioning of the measurement 

apparatus, but those physical laws are the laws of measurement, 

analogous to the laws of arithmetic, such as those presented by 

Helmholtz. Taking into account the theory of measurement, the 

devices can be tested (i.e., checked for systematic errors) before 

being applied to the test of scientific theories.  

An acquaintance with measurement theory can provide a 

more adequate view of the nature of experimental science, and 

it can also provide an effective help in discussing and searching 

for systematic errors in the physics laboratory. 

Both Helmholtz and Campbell believed that the theory of 

measurement could be useful in physics courses. Helmholtz 
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reproduced his analysis of measurement in two of his textbooks, 

and Campbell explicitly recommended the inclusion of a 

general discussion of measurement in introductory physics 

courses (Darrigol, 2003, pp. 554-555, 569-570). However, 

neither Helmholtz nor Campbell was successful in 

disseminating those ideas among physicists and physics 

teachers.  

The theory of measurement developed by Helmholtz, 

Campbell and other authors was not integrated into physics 

textbooks. It was discussed by philosophers and by 

psychologists and incorporated in their works. In the context of 

physics teaching, either measurement theory is completely 

ignored, or it appears under the form of operationalism. 

6. THE OPERATIONAL APPROACH IN PHYSICS 

TEACHING 

The operational approach to measurement emerged in the 

early 20th century from the work of physicists, and had a strong 

influence upon other fields. The main representative of this 

approach was Percy W. Bridgman, who published a book (The 

logic of modern physics) and several papers on his theory.  

According to operationalism, the measuring procedure 

defines a scientific magnitude. If we do not know how to 

measure something, it should not be regarded as a scientific 

magnitude. If we know how to measure it, then we know all that 

can be known about that magnitude. The measurement 

procedure, being a definition, is a convention. We can choose 

whatever procedure we want.  

Of course, there was a positive characteristic of 

operationalism: it emphasized the importance and utility of 

describing how is it possible to measure a given magnitude – 

when that is possible. There are many relevant physical 

magnitudes (such as the vector potential of electromagnetism) 

that cannot be measured at all. If we accepted the operational 

point of view, we should reject them. Now, it would be very 

useful to have some procedure to measure those quantities; 



Measurement theory versus operationalism 

 

151 

however, even though we cannot measure them, they are useful 

in physics.  

Even in the cases when we can measure a magnitude, the 

measurement procedure is not a definition of that quantity, and 

it is not arbitrary. If the instrument defined the magnitude, it 

would be impossible to say that the instrument is wrong. That is 

the relevant point that is stressed in the present paper. There 

exists a measurement theory, and that theory can tell use 

whether a given measurement procedure is acceptable or not (at 

least in some cases).  

Up to the decade of 1950, operationalism was popular among 

both scientists and philosophers. During the second half of the 

20th century, however, it suffered heavy attacks from 

philosophers and was completely discredited.  

Although rejected by philosophers, operationalism retained 

its appeal to physicists. In the last decades of the 20th century 

operationalism still appeared explicitly in educational articles as 

the accepted theory of measurement. In a paper describing some 

novelties introduced in the physics laboratory at the University 

of California, Berkeley, in 1979, the authors described that they 

expected the students to learn some general skills, “those which 

practicing scientists commonly use, but which most students do 

not possess”. The “general skills” were:  

 
(i) Being able to use operational definitions to relate 

symbolic concepts to observable quantities. This skill 

subsumes the ability to estimate or measure important 

physical quantities at various levels of precision. (ii) Being 

able to estimate the errors of quantities obtained from 

measurements. This skill involves applying habitually some 

qualitative or semiquantitative statistical notions, without any 

resort to excessive mathematical formalism. (iii) Knowing 

and applying some generally useful measuring techniques for 

improving reliability and precision, for example, such 

techniques include making repeated measurements, using 

independent measurement methods, or applying comparison 
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or “null” methods. (Reif & St. John, 1979, p. 950; my 

emphasis). 

 

It is possible to find more recent papers published in physical 

journals that still regard operationalism as a viable theory of 

measurement (Delaney, 1999), although physicists have been 

told by Mario Bunge (and other authors) that operationalism is 

scientifically and philosophically inadequate (Bunge, 1967). 

Several generations of physicists and physics teachers, all 

over the world, have studied Resnick and Halliday’s physics 

textbook (Resnick & Halliday, 1966). Both in the first and in the 

following editions, the first chapter of that treatise deals with 

measurement. In the older edition, the approach used by the 

authors is operationalism: 

 
For the purposes of physics, the basic quantities must be 

defined clearly and precisely. One view is that the definition 

of a physical quantity has been given when the procedures for 

measuring that quantity have been given. This is the 

operational point of view because the definition is, at root, a 

set of laboratory operations leading to a number with a unit. 

The operations may include mathematical calculations. 

[…] 

Examples of quantities usually viewed as fundamental are 

length and time. Their operational definitions involve two 

steps: first, the choice of a standard, and second, the 

establishment of procedures for comparing the standard to the 

quantity to be measured so that a number and a unit are 

determined as the measure of that quantity. (Resnick & 

Halliday, 1966, vol. 1, p. 2) 

 

In more recent editions of this textbook, no explicit reference 

is made to the operational point of view, but the shallow concept 

of measurement presented in that manual is the same: the most 

important step in measurement is choosing a standard, and then, 

in some way that is not elucidated, the measured system is 

compared to the standard and there results some number. Notice 

that this was the way physics textbooks introduced 
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measurement, before Helmholtz; and this is the way 

measurement is still presented by most physics teachers 

(Darrigol, 2003, p. 565).  

The common attitude transmitted by the best physics 

laboratory textbooks is to ignore altogether the existence of 

measurement theory, paying attention mostly to statistics, and 

mentioning systematic errors en passant.  

 
Random errors may be estimated by statistical methods, 

which are discussed in the next two chapters. Systematic 

errors do not lend themselves to any such clear-cut treatment. 

Your safest course is to regard them as effects to be 

discovered and eliminated. There is no general rule for doing 

this. It is a case of thinking about the particular method of 

doing an experiment and of always being suspicious of the 

apparatus. We shall try to point out common sources of 

systematic error in this book, but in this matter there is no 

substitute for experience. (Squires, 1991, p. 11) 

 

As a matter of fact, there are general rules that can be used 

to search for systematic errors. It is true that no rule will detect 

all systematic errors, but many systematic errors can be found if 

one follows some simple rules of measurement theory.  

A recent multi-author paper that appeared recently in The 

Physics Teacher addresses the teaching of measurement (Allie 

et al., 2003). The main concern of the paper is how to teach 

students to deal with uncertainty in the introductory physics 

laboratory. Although the article does mention systematic errors, 

the approach of the authors is probabilistic and they do not 

address measurement theory.   

Nowadays, measurement theory is ignored in scientific 

education. It is not mentioned in Science for all Americans / 

Project 2061 of the American Association for the Advancement 

of Science. According to the guidelines of that project, it is 

expected that everyone should acquire the ability to “use 

appropriate instrument to make direct measurements of length, 

volume, weight, time interval, and temperature [...]” and also to 
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“take readings from standard meter displays, both analog and 

digital, and make prescribed settings on dials, meters, and 

switches” (Rutherford, 1990, pp. 191-192). However, 

understanding the instruments and the principles underlying 

measurement is not included in the aims of that Project.  

In the context of science education, few warnings have been 

published regarding the problems of operationalism. One nice 

exception can be found in a paper by Jorge Paruelo, where the 

author calls the attention to contradictions that can be found in 

physics textbooks which adopt the operational point of view: 

 
The contradiction is a consequence of not distinguishing 

the operationalization of a magnitude – that is, defining an 

operative mechanism to detect the presence of the magnitude, 

or to measure its quantity – and operationalism – that is, 

defining the magnitude by the aforementioned operation. A 

correct epistemological analysis of this subject will allow the 

development of a new route for teaching what a physical 

magnitude is and how it is detected. (Paruelo, 2003, p. 331) 

 

I hope that the present paper will help calling the attention of 

physicists and educators to measurement theory, and will assist 

in improving the teaching of experimental physics. I do not 

claim that the ideas presented here can solve all the educational 

problems concerning the science laboratory. I do claim, 

however, that the subject of measurement is almost exclusively 

viewed by teachers and students as the blind use of measurement 

instruments and later statistical manipulation of data and that 

this is an inadequate view. Of course, even on that viewpoint 

there are educational problems – for instance, students have 

difficulty in understanding the need for repeating measurements 

and in dealing and interpreting uncertainties, and it is useful to 

investigate how those difficulties can be circumvented (Rollnick 

et al., 2002). However, the current approach, even when it is 

successful, leads to an incomplete understanding of 

measurement. The study of measurement theory (in the sense 

offered in this paper) and the search for systematic errors that 



Measurement theory versus operationalism 

 

155 

can be guided by that theory may contribute to broaden the 

understanding of physical measurement and to inspire a more 

adequate education of future scientists.  

7. RESOURCES FOR STUDYING MEASUREMENT 

THEORY 

This paper presented some general information concerning 

Helmholtz’ theory of measurement and attempted to motivate 

further study and use of that approach. Any person interested in 

studying and applying this theory in physics education will need 

additional literature on the subject. What can I suggest? 

Helmholtz’ work was a landmark, but it is not the best 

presentation of his approach. It can be used, but one should keep 

in mind its several limitations, such as the ones that were 

described above.  

Norman Campbell’s presentation of measurement theory is 

remarkably clear, well organized, and written in an accessible 

style. It is more complete than Helmholtz’ original essay and I 

do warmly recommend it. Although Campbell’s Foundations of 

science was originally published almost one century ago, it is 

still very useful as an introduction to measurement theory, for 

physicists. It is available as a reprint (Campbell, 1957). 

Brian Ellis, a philosopher, published in 1968 a very useful 

book on Basic concepts of measurement (Ellis, 1968). His work 

was not as rigorous as later developments in measurement 

theory, but in some sense that is an advantage: many recent 

books and papers on measurement theory are hermetic and can 

be described as scientifically sterile. They would not appeal to 

a scientist wanting to improve his scientific research or his 

teaching. Ellis’ book is well written and, although the author 

was a philosopher, he did present the main ideas in such a way 

that physicists and other scientists will have no difficulty in 

understanding and enjoying most of the book.  

I would not recommend to physicists and physics teacher the 

three volumes of The foundations of measurement, the current 

“Bible” of measurement theory (Krantz, Luce, Suppes & 
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Tversky, 1971-1990). This fundamental treatise is a very nice 

contribution to the current view of measurement, but its style 

does not seem suitable for most working scientists. Much of 

current publications on measurement theory only discuss the 

mathematical side (the axioms that the physical operations 

should mirror) or philosophical issues, but do not address the 

central point discussed here – the possibility of testing a 

measurement procedure by imposing that it should obey some 

rules analogous to those of arithmetic operations.  

There are many different issues related to measurement 

theory. Some of them (such as those discussed in the present 

paper) can be perceived as directly relevant to the scientific 

practice, having important consequences for the practice of 

experimental physics. Other issues, although they have a strong 

appeal to measurement theory experts, are more remotely 

associated to the practice of experimental science. From the 

philosophical point of view, there are relevant ontological 

issues: Do physical objects have quantitative properties, or are 

quantities something extrinsic to physical objects? Some papers 

present a nice account of several epistemological problems of 

measurement – most of them having little relation to the 

scientific experimental practice (Mari, 2003; Boniolo, 2002). 

Therefore, the relevance of a large part of that literature to the 

practice of the physics laboratory is not very high.  

8. CONCLUDING COMMENTS 

This paper maintains that a specific part of philosophy of 

science can be improve the understanding and practice of 

measurement and that for that reason it would be valuable to 

introduce it in science education.   

Sometimes the use of philosophy of science in education is 

viewed as a mere transmission of the views adopted by some 

specific philosophers, with no regard to the specific needs of 

science education. I agree that philosophy is useful and should 

be taught, but sometimes it may fail improving science 

education. Borrowing a phrase coined by Jorge Paruelo, what is 
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urgently needed is an applied philosophy of science 

(PARUELO, 2003, p. 334), selecting and adapting the 

philosophical knowledge (and techniques) to science teaching. 

The teaching of the elements of measurement theory in the 

physics laboratory may be a fine step in this direction. 

Helmholtz’ approach to measurement can be easily taught in 

undergraduate physics courses. We introduced it successfully in 

Brazil, several years ago. This theory of measurement provides 

a more adequate basis for the physical laboratory than 

operationalism and may improve the students’ understanding of 

experimental physics. 
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