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I. FONCENEX AND THE COMPOSITION 

OF FORCES  
 

Roberto de Andrade Martins 

 
Abstract: This paper describes a forgotten episode of the 

history of dimensional analysis. An article published in 1761 

by François Daviet de Foncenex contains the first known 

attempt to derive a physical law – the parallelogram rule of 

forces – using the principle of homogeneity. The motivation of 

that work was the wish to provide an a priori proof of the basic 

laws of mechanics. The context and consequences of the paper 

are described. It is shown that this attempt was not grounded 

upon clear and solid assumptions and that its basic ideas were 

implicitly in conflict with the conceptions of that time. 
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1. INTRODUCTION 

Dimensional analysis is a method designed to produce 

scientific quantitative laws from a formal condition: the 

requirement of dimensional homogeneity (see Langhaar, 1951; 

Sédov, 1977). This technique received much attention in the last 

quarter of the 19th and in the first half of the 20th century. 

Today, it is not a very popular subject, although it has shown a 

moderate success in the realm of highly complex phenomena, 



Roberto de Andrade Martins 

 

6 

where a detailed theory of the processes is missing – such as in 

fluid dynamics and stellar structure. 

Some books on dimensional analysis contain information 

about the history of this subject, and a few authors have sketched 

several components of its evolution (Ravetz, 1961; Macagno, 

1971; Higgins, 1957). Although too little has hitherto been 

written on the development of dimensional analysis, the 

following outlook of its history emerges. The study of the 

dimensions of physical magnitudes has undergone a series of 

metamorphoses, and was linked to several subjects, such as: (i) 

a concern about unit conversion, and the use of dimensions to 

test the homogeneity of formulas (Fourier); (ii) the theory of 

models and similitude relations, studied by Galileo and Newton, 

and later linked to the method of dimensions, in the 19th century 

(Bertrand, Ledieu); (iii) the application of the method of 

dimensions, in the second half of the 19th century, to the 

derivation of formulas for complex phenomena (Rayleigh, 

Reynolds), and later to the foundations of physics (Rayleigh, 

Jeans, Einstein) and applied physics (Buckingham, 

Riabouchinsky) at the beginning of the 20th century; (iv) 

parallel to the development of the technique of dimensional 

analysis, the study of “absolute” measurement (Ampère, Weber, 

Gauss) led to the study of the dimensions of electromagnetic 

magnitudes (Maxwell, Jenkins, Vaschy, Hertz); the discussions 

about this subject soon became intermingled with controversies 

about ether models and the “essence” of electricity and 

magnetism. From those controversies came the popularity and 

stimulus for the study of dimensional concepts in the late 19th 

century; most textbooks on electromagnetism of that period 

included a section on the theory of physical dimensions, and this 

did not occur in other fields of physics; (v) in the two last 

decades of the 19th century, some authors tried to establish the 

foundations and to systematize the study of physical dimensions 

(Herwig, Vaschy, Piochon); (vi) in the first decade of the 20th 

century, interest on the ether and discussions about 

electromagnetism declined, and ultimately dropped to the 
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background; after 1910, most authors ignored the previous 

history of dimensional analysis. With the publication of 

Bridgman’s book (Bridgman, 1922), the modern period of 

dimensional analysis begins, and previous works were gradually 

forgotten.  

This seems to be a correct, although incomplete, sketch of 

the history of the study of physical dimensions. Some 

interesting episodes have been left outside of the account, and 

the names of many contributors to this field have been omitted. 

But even the above sequence of episodes never received a 

detailed historical study. Why has the history of this subject 

been hitherto so neglected? Two main reasons seem to have led 

to this state of affairs: (i) Most physicists today scarcely know 

that dimensional analysis exists, and most scientists probably 

think that this is a dead subject; its importance in current 

scientific research is negligible, and accordingly not many 

people would be driven to search its history; (ii) To most 

modern scientists – and even historians – it also seems that this 

subject has never been an important one, and that no deep 

problems have ever arisen concerning it; so, it does not deserve 

a detailed study. This is a wrong opinion, however.  

Physicists will certainly be surprised when told that several 

famous scientists have devoted some of their time to this 

subject, studying its foundations, using dimensional analysis in 

fundamental research, and engaging into bitter discussions 

about physical dimensions. Besides, there are very deep aspects 

of dimensional analysis that have been overlooked and that do 

still allow fruitful foundational research – it is a forgotten but 

far from dead subject. For all those reasons, it seems that 

dimensional analysis still deserves a detailed study – and the 

best beginning seems to dig up its early history. 

The specific aim of this paper is to study how dimensional 

analysis began. There is little doubt that the concept of physical 

dimensions now in use has been explicitly formulated for the 

first time by Fourier (1822, pp. 135-140). However, the use of 

dimensional analysis – the use of dimensional arguments in the 
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derivation of equations – is not found in Fourier’s works. This 

circumstance has led authors to think that dimensional analysis 

was created after Fourier’s work. It has even occurred that 

someone who has made extensive use of dimensional analysis 

was credited with its origin. Thus, Riabouchinsky (1911) 

pointed to Rayleigh’s 1899 work on capilarity as the first 

instance of this technique. This is far from true. 

Other authors have tried to find the roots of dimensional 

analysis much time before Fourier, in the works of Galileo and 

Newton (Higgins, 1957, p. 331; Larmor, 1926, pp. 736-738; 

Ravetz, 1961, p. 9). It is true that Galileo has contributed to the 

theory of models – a field later linked to dimensional analysis – 

and that Newton has demonstrated a principle of mechanical 

similitude that was afterwards appplied to the theory of models 

and associated to dimensional reasoning. But both the concept 

of dimensions of physical magnitudes, and their use together 

with the principle of homogeneity to derive scientific laws, have 

arisen much later than that. 

The use of dimensional analysis presupposes the use of 

functions and mathematical analysis within science. This did not 

occur in physics before the 18th century. Hence, it would not be 

wise to search for any instance of dimensional analysis before 

that century.  

It seems natural to think that dimensional analysis must have 

been created after Fourier’s elaboration of the concept of 

physical dimensions, in the 19th century; but actually the use of 

this technique has preceded the formulation of a theory of 

dimensions. The two earlier instances of the use of dimensional 

analysis that I have been able to find have appeared in an article 

on the foundations of mechanics, signed by François Daviet de 

Foncenex, published in the scientific proceedings of the Turin 

Academy (Foncenex, 1761); and in the Elements of geometry of 

Adrien Marie Legendre (1794). It seems to me that those two 

contributions to dimensional analysis have not hitherto been 
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noticed by historians,1 although both of them have been known 

to historians of other fields,2 and they were sometimes cited by 

19th century authors.3 

Those two episodes, together with their historical context and 

consequences, will be studied in this paper and in its follow-up.4 

It will be shown that the origin of dimensional analysis was the 

search for a priori proofs of the fundamental laws of mechanics 

and geometry – specifically, the law of composition of forces, 

and the postulate of parallels. 

In order to understand the significance of the article ascribed 

to Foncenex (hereafter called ‘the Turin paper’, for reasons that 

will become clear later), it is necessary to state the situation of 

mechanics – and in particular of the law of addition of forces – 

in the 18th century.  

 
1 This paper was written in 1981. Its main results were published in 

summary form in the same year (Martins, 1981). Another paper by the 

author, in Portuguese, added further information on the subject 

(Martins, 2004). However, the detailed descriptions presented in the 

current paper and in the next one of this volume have not been 

published up to now, that is, forty years later. In the interim, following 

the hint presented in the 1981 published paper, other authors have 

mentioned Foncenex’s work. I will not present here a review of the 

studies on this subject published after 1981. Except for this note, the 

present chapter only reproduces the content of the original 1981 

manuscript. 
2 The relevance of those works for the history of non-Euclidian 

geometry and mechanics has been remarked by Roberto Bonola 

(1955, pp. 53, 55-60, 197-199). However, this author has not noticed 

that Foncenex and Legendre have provided the first instances of 

dimensional analysis. 
3 Reference to the relation of Legendre’s work and dimensional 

analysis may be found in Ledieu (1883) and Pionchon (1891, pp. 228-

234). 
4 Roberto de Andrade Martins. The early history of dimensional 

analysis: II. Legendre and the postulate of parallels, in this volume. 
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2. THE PARALLELOGRAM OF FORCES 

Newton’s mechanics was ostensibly grounded upon three 

“axioms of motion” (Newton’s three laws). The law of force 

composition (the parallelogram rule) is presented in Newton’s 

Principia as a corollary to his laws of motion (Newton, 1952, p. 

15), not as an independent law. However, it is an independent 

law, and cannot be derived from the three laws of motion. 

The composition of uniform motions had already been 

studied by Galileo, and the idea can be traced back to Greek 

authors – indeed, it appears in the pseudo-Aristotelian 

Mechanics. Parallelograms of force have appeared several times 

in the 16th and 17th centuries, but it was only in 1687 that this 

law has been justified and applied to mechanical problems. It 

was simmultaneously presented by Newton, Varignon, and 

Lamy (Crowe, 1967, pp. 2, 13-14; Costabel, 1966; Montucla, 

1802, pp. 609-610). 

Once stated and applied with success, the rule was accepted, 

but its geometrical dress bothered many authors. Could this law 

be proved by a geometrical argument? Was it possible to 

provide an a priori proof of this law ? The usual answer was: 

Yes. Many attempts to devise a simple and correct proof of the 

law have arisen, from Newton’s time to the 20th century (Dugas, 

1950). One of the most famous was the one presented by Daniel 

Bernoulli (1726). As will be seen below, it has indirectly 

influenced the composition of the Turin paper. 

In the 18th century, the word ‘physics’ was related to the idea 

of empirical studies; mechanics was not regarded as part of 

physics, by French researchers – it was considered to be a part 

of mathematics. At that time, all the branches of mathematics 

were believed to contain correct a priori knowledge. It was not 

thought to be a formal and conventional science, as we now 

believe. This change of outlook came only after the rise of non-

euclidian geometry. People thought that mathematics should be 

grounded upon a few intuitive or apoditic axioms, and 

everything should be derived from those principles and 

definitions, by rigorous proof. It was expected that some non-
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evident principles of mathematics – such as the fifth postulate 

of Euclid’s geometry – would be either eliminated as 

unnecessary, or derived from other clearer a priori truths. 

Mechanics, as a part of mathematics, should follow the same 

model.  

This attitude can be clearly noticed in d’Alembert’s work – 

and, as will be seen below, those ideas have strongly influenced 

the Turin paper. D’Alembert’s attitude to mechanics follows his 

general ideas about science (d’Alembert, 1805, p. 30). He 

believed that science should be grounded on true principles – 

simple and recognized facts that can neither be denied nor 

explained – such as the impenetrability of bodies, in mechanics, 

which he thought to be the source of their mutual actions. 

Everything else should be derived from those simple principles. 

In the preface of his Traité de dynamique, d’Alembert stated 

his opinion: 

 
The safety of the [parts of] Mathematics is an advantage 

that those sciences borrow from the simplicity of their 

subjects. It is necessary to admit that, since not every part of 

Mathematics has an equally simple subject, likewise the 

appropriate certitude, that which is founded upon Principles 

necessarily true and evidents by themselves, does not belong 

equally and in the same way to all those parts. Many of them, 

grounded on Physical Principles, that is, upon Experimental 

truths, or upon mere hypotheses, are just what could be called, 

let us say, of an Experimental certitude, or are even mere 

suppositions. To say more exactly, we can only regard as 

marked by the stamp of evidence those that deal with the 

calculus of magnitudes and the general properties 

ofextension, that is, Algebra, Geometry, and Mechanics. 

(d’Alembert, 1743, p. i) 

 

D’Alembert stated that the foundations of Mechanics have 

been neglected: its principles are either obscure in themselves, 

or obscure demonstrations are provided for those principles 

(d’Alembert, 1743, p. iv). He proposed to reduce the number of 
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the principles, to deduce them from clearer notions, and to apply 

them. He uses in his mechanics three fundamental principles: 

the law of inertia, the principle of composition of motions, and 

the equilibrium law (he used this name to refer to the collisions 

of bodies, not to the lever). 

In the second edition of his Traité, d’Alembert discussed the 

problem raised by the Academy of Berlin: ‘Are the laws of 

motion and equilibrium of bodies necessary or contingent 

laws?’ (d’Alembert, 1758, pp. xxiv-xxix). He divided the 

problem in two parts: (1) Which are the laws of motion and 

equilibrium that would follow necessarily from the most basic 

properties of matter and motion? (2) Are those the observed 

laws? According to d’Alembert, it could happen that God would 

choose to apply to the world not the simplest laws, but other 

different laws, and this is the motivation of the second question. 

After developing his arguments, he reaches the final answer: 

 
From all those reflections, it follows that the known laws 

of statics and mechanics are those that result from the 

existence of matter and motion. But experience proves that 

those laws are indeed observed in the bodies around us. 

Therefore the laws of equilibrium and motion, such as those 

that observation inform us, are necessary truths. (d’Alembert, 

1758, p. 397) 

 

It seems to me that this is clearly a Cartesian attitude,5 

although sometimes d’Alembert criticizes Descartes. See for 

instance this ironical sentence: “... but nobody ignores that the 

Cartesians (a sect that today has almost disappeared)...” 

(d’Alembert,1805, p. 369; d’Alembert, 1743, p. v).  

Since d’Alembert believed that the basic laws of mechanics 

could be derived from other simpler ideas, the problem was 

reduced to finding those simple ideas and the most plain 

 
5 I agree with Hankins’ opinion on this point (Hankins, 1970). See, 

however, Cane’s criticism and Hankins’ reply (Cane, 1976; Hankins, 

1976). 
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derivations of the laws. D’Alembert chose the law of 

composition of motions as one of the basic principles of his 

mechanics; therefore, part of his job was to prove it from simple 

ideas. He provided one demonstration in his Traité; a simpler 

derivation was presented later (d’Alembert, 1743, p. 22; 

d’Alembert, 1761-1780, vol. 6, pp. 360-369). 

3. THE TURIN PAPER: MOTIVATION AND CONTENT 

D’Alembert’s ideas have greatly influenced the Turin paper. 

The motivation of that article is exactly the same as 

d’Alembert’s. At the beginning of the paper, its aim is stated: to 

prove the laws of inertia, of composition of forces, and of 

equilibrium; and to answer the question: are the laws of 

mechanics necessary or contingent truths? (Foncenex, 1761, p. 

299). 

The main source of the ideas in the Turin paper seem to be 

d’Alembert’s works. In this paper, d’Alembert is cited several 

times, and called ‘un très-grand Géomètre’ and ‘l’homme 

Célèbre’ (Foncenex, 1761, p. 299); the Traité de dynamique is 

cited, and at another point the paper refers to d’Alembert’s 

article on force in the Encyclopédie,6 and calls him ‘illustre 

Ecrivain’ (Foncenex, 1761, p. 304). He again cites d’Alembert 

and refers to his Opuscules mathematiques, at the same 

paragraph where a reference to Bernoulli may be found 

(Foncenex, 1761, p. 313). Since Bernoulli is cited by 

d’Alembert in that work, it seems likely that the author of the 

Turin paper did not read Bernoulli’s original demonstration of 

the parallelogram law. Besides Bernoulli and d’Alembert, the 

only author cited in the Turin paper is a certain Mr. Formey 

(probably Jean-Henri-Samuel Formey), whose ideas he 

criticized (Foncenex, 1761, p. 318).  

While studying the question proposed by the Berlin 

Academy, the paper refers to d’Alembert’s belief that God could 

 
6 I believe that he refers to the article on “Composition du movement” 

(d’Alembert, 1778-1779). 
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violate the rational laws of mechanics; but this opinion is not 

accepted. The following argument is presented: being part of 

Mathematics, Mechanics has laws as evident as those of 

Geometry, and those laws cannot be violated. God can choose 

to act upon the bodies, and to direct their motion. He could even 

choose to make all bodies to move in circles, without any 

apparent reason. However, in this case, God’s action would be 

a new force, and this force would necessarily obey the laws of 

mechanics (Foncenex, 1761, pp. 299-301, 318-319). 

The article is divided in five parts: the introduction, the first 

numbered section, ‘On the Force of Law of inertia’, the second 

‘On the composition of forces’, the third ‘On the principle of 

equilibrium’, and the fourth ‘On the Lever’. Although the lever 

law may be derived from other principles, in the last section the 

author chose to provide an independent demonstration of this 

law, because “it seems very difficult to decide whether we 

should make the equilibrium of the lever to depend on the 

composition of forces, or conversely to deduce the latter 

principle from the equilibrium of the lever” (Foncenex, 1761, p. 

301). There are two relevant passages where the principle of 

dimensional homogeneity is used: the derivation of the law of 

force composition; and the lever law. 

The proposed demonstration of the parallelogram rule begins 

with a Lemma: before proving the general law of composition 

of forces, the paper proposes a proof that two forces of equal 

intensity and applied to the same body have a resultant that is 

proportional to their intensity and to a function of the angle 

between them. We reproduce below this part of the article: 

 
Lemma. If two equal forces with their quantities and 

directions being represented by the lines CA, CB, act upon any 

body C [Fig. 1], it is evident that this body will not be able to 

obey at the same time to those two forces: because it cannot 

move at the same time along CA, and along CB; it will 

therefore take a direction CM different from CA and from CB, 

and the line CM must necessarily divide the angle ACB in two 

equal parts, because, the forces CA, CB being equal by 
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supposition, everything that disposes CM to approach CA will 

equally dispose it to approach CB. This having been set, it is 

also evident that we may imagine a third force CM that 

produces alone the same effect upon the body C, as CA, CB 

conjointly. Besides, the quantity [intensity] of the force CM 

cannot depend but on the quantity of CA or CB and of the 

value of the angle ACB, and consequently if we make CA = 

CB = a, CM = z, ACB = , we shall have z = funct. (a, ).  

But the force CM being of the same nature as the [force] 

CA, it is necessary that they contain one same number of 

dimensions; that gives z = CM = funct. (a, ) = a.funct., since 

the dimension of  is null. (Foncenex, 1761, pp. 305-306) 

 

 
Fig. 1 – Composition of forces (Foncenex, 1761, planche 4, f. 1) 

 

In a footnote the author remarked: 

 

It follows from this that, the angle  remaining constant, z 

is always proportional to a; we could in the same way 

demonstrate by this method, in a direct and very natural way, 

many theorems about the proportionality of the sides of 

figures, and a great number of other propositions of 

Geometry, and of Mechanics. (Foncenex, 1761, p. 306) 
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From the style of this note and other sentences of the paper, 

one may infer that the author was not aware of any previous use 

of this method. He says that “we could in the same way 

demonstrate... many theorems... of Geometry and of 

Mechanics” (“on pourroit de même démontrer par cette 

méthode...”), and this implies that this has not yet been done. At 

another place of the paper, we read: “The completely analytical 

demonstration that I have found has seemed to me otherwise 

worth finding its place here for its singularity” (Foncenex, 1761, 

pp. 301, 313). It seems therefore that the author did believe that 

his method was new.  

A similar dimensional argument is used again twice in the 

paper. At one place, a variation of the demonstration of the 

parallelogram law is presented, where the author shows that the 

same results are reached if instead of forces proper, we consider 

the composition of what we now call moments; he first derives 

the basic lemma taking mass as the variable parameter, and 

afterwards does the same using velocity as the relevant 

parameter (Foncenex, 1761, p. 304). At another place, the 

author uses the same method to study the equilibrium of the 

lever (see Fig. 2), and starts by a new lemma: 

 

 
Fig. 2 – Lever equilibrium (Foncenex, 1761, planche 4, f. 7) 

 
Lemma. If two equal forces = p (as, for instance, two equal 

weights) act in parallel directions upon the lever AB at the 

points A and B at equal distances from the fixed point C, it is 

at once evident that the lever will be in equilibrium relative to 

the point C, since everything is equal on one side, and the 

other: I also say that the point C will support the same effort, 

as if the forces p + p were directly applied to C; because this 

effort, or the force that would equilibrate them if it would act 
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at C in the opposite direction, cannot  depend but on the 

quantity p, and, if we want, of the distance CA, which I call x; 

this force will therefore be expressed by fonct. (p, x), and this 

we may demonstrate to be equal to p.fonct. x, as in the lemma 

of the Article I. (Foncenex, 1761, pp. 319-320) 

 

It is very important to remark that in the case of the 

composition of forces (or momenta), one of the variables was 

the angle, with null dimension; but here, we have two variable 

parameters which do not have null dimension. 

The dimensional arguments used in the Turin paper make use 

of some implicit assumptions. We may analyse the argument as 

if derived from the following premises:  

 

TP (Turin Paper) 1 – Whenever two magnitudes are of the same 

nature, they have the same number of dimensions. 

 

TP2 – Angles have null dimensions. 

 

TP3 – Forces, masses and velocities have a number of 

dimensions different from zero. 

 

TP4 – The dimensions of force are different from the 

dimensions of length. 

 

TP5 – If z is a function of a and b; if z and a have the same 

number of dimensions (different from zero); and if b is a 

magnitude of null dimensions or has dimensions different from 

a and z; then we must have z = a.f(b); that is, z must be directly 

proportional to a and to a function of b. 

 

Those assumptions are sufficient – and, it seems to me, they 

are the most natural ones – to justify the steps where the Turin 

paper uses dimensional arguments.  

But what exactly were the concepts of ‘dimension’ and 

‘number of dimensions’ used here? Where did these ideas come 

from? There are two alternatives: either the author has created 
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and used a concept of his own; or he is applying ideas previously 

developed and known. But when an author creates and uses for 

the first time a new concept, he usually elucidates its meaning. 

This elucidation would be particularly necessary in the present 

case, since there was a previous use of the word ‘dimension’ in 

geometry, and he should establish a distinction between his 

concept and the geometrical concept, if there was any difference 

between them. But in no place of the Turin paper can we find an 

elucidation of the concept of dimension; and in no other work 

signed by the same author can we find that elucidation. We may 

infer that the author is probably using a previously known 

concept, not a new one. Let us therefore recall what was the 

meaning of ‘dimension’ at that time. 

4. THE CONCEPT OF DIMENSION IN THE 18TH 

CENTURY 

In Diderot’s Encyclopédie we find an article on ‘Dimension’ 

which was probably written by d’Alembert, who was the author 

of most scientific articles (d’Alembert, 1778-1779, vol. 10, pp. 

1058-1059). It provides an obscure definition of dimension as 

“the extension of a body considered as measurable or 

susceptible of measure”, and provides as instances: length, 

breadth, depth. In the same article we find the use of the word 

‘dimension’ to denote algebraic powers or exponents (see also 

Rosenfeld & Cernova, 1967). The two uses of the word are 

related through a geometric instance: if a and b are two lines, 

then their product ab may represent the area of a rectangle with 

sides a and b; but a rectangle is a geometric figure with two 

dimensions, and lines have one dimension; hence, any product 

of two lines, or the second power of a line (or one dimension) 

may be regarded as corresponding to a figure of two dimensions. 

Also, the product abc may be interpreted as the volume of a 

solid that has three dimensions; as a general rule, the exponent 

or number of linear factors in a geometrical formula will 

correspond to the number of dimensions of the geometrical 

entity related to that formula, and this establishes a relation 
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between algebrais powers and geometric dimensions. From this 

use have arisen in Antiquity our expressions ‘square’ for the 

second power, and ‘cube’ for the third power of any quantity.  

Within geometry (but only in this field) the first assumption 

of the Turin paper (TP1) was well known and used. Each kind 

of geometric entity was supposed to have a specific number of 

dimensions: solids have three dimensions, surfaces have two, 

lines have one, points have none. There are no other geometric 

dimensions. Since only homogeneous quantities can be 

compared to one another, added together or divided by one 

another,7 then, in geometry, the necessary and sufficient 

condition for the possibility of comparing, adding and dividing 

two quantities was their equality of number of dimensions. 

Hence, the principle of homogeneity became a condition about 

the number of dimensions of the concerned quantities. This 

requirement of dimensional homogeneity was widely used in 

analytic geometry, since the time of Fermat and Descartes 

(Fermat, 1891-1896, vol. 1, pp. 91-103; Descartes, 1664, pp. 67, 

77, 80).  

The second assumption was the statement that angles have 

null dimensions. The geometrical status of angles was not 

altogether clear in Antiquity, and it remains obscure (Heath, 

1956, vol. 1, 176-180). Angles are geometrical entities, no 

doubt. If they have null dimensions, then they share the same 

nature of0 points, and this does not seem acceptable. But if an 

angle is thought as the space included between two lines, it is of 

the same nature as a surface, and would have two dimensions; 

but since the area corresponding to an angle would always be 

infinite, angles do not have a finite ratio to any limited surface, 

and therefore angles and finite surfaces are not homogeneous 

 
7 The ancient ideas about magnitudes can be found in Euclid’s 

Elements (Heath, 1956, vol. 2, 112-120). 
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quantities.8 This is not an elementary problem, and we cannot 

try to solve it here. We just need to remark that in the 18th 

century it was generally accepted that angles had null 

dimensions, being similar to abstract numbers. Hence, this 

supposition, although problematic, was not new.  

The last assumption of the paper (TP5) may be considered a 

consequence of the requirement of dimensional homogeneity of 

formulas; but although this principle was accepted in geometry, 

I have been unable to find any previous use of this condition to 

derive the form of an equation. Previous authors have only used 

the principle to verify formulas. Hence, this assumption of the 

Turin paper seems original.  

The two remaining assumptions (TP3 and TP4) are 

remarkable, and show a departure from the purely geometrical 

concept of dimension. The concept of dimension is now applied 

to physical parameters. This is a bold step, and the author of the 

paper probably had no clear idea about this use. The number of 

dimensions was known and understood for geometrical entities 

and abstract numbers; but what could be the number of 

dimensions of force, or mass ? If they did have a definite number 

of dimensions, they would be dimensionally equal – and 

therefore homogeneous to – some kind of geometrical entity, 

and could therefore be equated or added to it in mathematical 

formulas. But this would be an unacceptable idea, at that time.  

Notice that, at the time of publication of the Turin paper, the 

concept of dimension was quantitative (numerical) and not 

qualitative. Different kinds of dimensions were not discussed. 

‘Dimension’ was exactly equivalent to ‘geometrical dimension’. 

It is true that d’Alembert refers to the possibility of considering 

time as a fourth dimension,9 but he states this as a mere curiosity, 

 
8 Homogeneous quantities must have a finite ratio. A line is not 

homogeneous to a surface because there is not a finite ratio between 

them (Heath, 1956, vol. 2, 112-120). 
9 In the Encyclopédie article referred above, d’Alembert stated: “I 

have said above that it is impossible to conceive more than three 

dimensions. A friend of mine believes that we can regard duration as 



Foncenex and the composition of forces 

 

21 

and this was certainly not a common idea. Our modern 

conception of different kinds of dimensions did not exist at that 

time.10  

We may find some previous use of the concept of dimension 

within physics. One of them, indicated by Macagno (1971), 

appears in Descartes’ speculations. But Descartes’ use is 

obscure and had no influence on the later development of the 

concept of physical dimensions (Martins, 1981). Even if the 

author of the Turin paper knew Descartes’ ideas, they could not 

have aided him. 

Another instance, also remarked by Macagno, is that made 

by Euler, who explicitly talks about dimensions, and 

homogeneity conditions in mechanics (Euler, 1948). However, 

before studying his contribution, let us go back to earlier ideas. 

In Antiquity, it was accepted that to multiply or to divide two 

heterogeneous magnitudes was absurd, except in the case of 

geometrical magnitudes (Bochner, 1963). So, while we 

ordinarily represent the lever law as the equality between two 

products of length versus force  

F1.L1 = F2.L2 , 

Archimedes could only understand this law as an equality of 

ratios of homogeneous quantities: 

F1/F2 = L2/L1 . 

Although in the 13th and 14th centuries some authors did 

already define speed as the ratio of two concrete quantities – as 

space divided by time (Crombie, 1961) – Galileo in the 17th 

century still represented the relation between space, time and 

speed in a way that, in modern notation, can be rendered as: 

 
a fourth dimension, and that the product of time versus a solid would 

somehow be a product of four dimensions; this idea may be contested, 

but it has some merit, it seems to me – at least that of novelty” 

(d’Alembert, 1778-1779, vol. 10, pp. 1058-1059). 
10 The idea only appeared with Fourier (1822, vol. 1, pp. 135-140). 
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 d1/d2 = (v1/v2).(t1/t2), 

for uniform motion (Galilei, 1842-1856, vol. 13, p. 152),  and 

e1/e2 = (t1/t2)² 

 

for uniformly accelerated motion (Galilei, 1842-1856, vol. 13, 

p. 168). He also presented the relation between mass, density 

and volume (Galilei,1842-1856, vol. 12, p. 21) in a way that we 

represent (in modern notation) as: 

MA/MB = (dA/dB).(VA/VB). 

This was the usual way of understanding physical relations: 

as equations between pure or abstract numbers, and not as 

relations between physical magnitudes of different kinds. That 

is also the notion which we may find in the works of 

d’Alembert, Carnot and Lagrange, shortly before or after the 

time of the Turin paper (d’Alembert, 1805, p. 404; Carnot, 1803, 

p. 11). 

In the beginning of his book Theoria motus corporum 

solidorum seu rigidorum, Euler assumed the same idea. After 

defining velocity as the ratio of space divided by time (Euler, 

1948, pp. 28-29), he asks: How could we divide space by time, 

since they are heterogenous quantities? We cannot say how 

many times is a time such as ten minutes contained in a space 

such as ten feet – and if we could divide a space by a time, then 

this time would be contained in that space. But Euler shows that 

all relations between speed, space and time may be reduced to 

ratios between homogeneous quantities and equations between 

pure numbers, in the same way that was envisaged by Galileo 

and other former authors; in this way, all difficulties disappear. 

But if all physical laws are to be reduced to relations between 

numbers, no dimensional requirement can be applied to them, 

since there is no homogeneity restriction to the form of relations 

between adimensional quantities. For instance: according to our 

modern ideas, a physical equation such as 
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F = m.a 

is dimensionally correct, but 

 F = m/a 

would be wrong. But this second equation can be written as: 

F1/F2 = (m1/m2).(a2/a1), 

and this equations is correct, from the dimensional point of 

view. Hence, the Turin paper could not make use of an 

interpretation similar to Euler’s. 

However, at another place of his book, Euler used a different 

approach. He again discussed the problem of comparison of 

heterogeneous quantities, and also the problem of arbitrariness 

of units, proposing a method of absolute measurement of 

mechanical quantities (Euler, 1948, p. 82). As will be seen 

below, he attempted to reduce all physical magnitudes to lengths 

and abstract numbers.  

Euler assumed, as we do, that weight and forces are 

homogeneous quantities; but he also stated that he would use 

weight as a measure of mass, because at each place they are 

proportional; and he accordingly accepts them as homogeneous 

quantities (Euler, 1948, p. 87). Since in mechanical equations 

there appear ratios of force to mass, those ratios become abstract 

numbers. Euler also assumes that times are always to be referred 

to (or divided by) the second, and hence, whenever a symbol t 

for time appears in an equation, an absolute number is to be 

understood by this letter. 

Euler states that whenever forces appear in an equation, they 

are to be divided by the weight of the body to which they are 

applied, and hence only an absolute number will appear in the 

place of forces. Velocities are to be measured by the space 

traversed in one second. Euler then expresses velocities by 

spaces, and this amounts to regard velocities and lines as 

homogeneous quantities  (Euler, 1948, p. 89). Hence, in all 

physical equations, only two kinds of quantities appear: either 

absolute numbers, or geometrical lines. Accelerations are also 
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regarded as homogeneous to lines, since time is regarded as an 

abstract number  (Euler, 1948, p. 90). 

Euler remarked that it is easy to notice the homogeneity of 

the equations of motion, since the space traversed by a body, its 

velocity and acceleration are linear quantities of one dimension 

(“sint quantitates lineares et quasi unius dimensionis”), and 

times and the ratios of force per mass are considered as absolute 

numbers, which must be reckoned as of null dimension (“qui 

nullam dimensionem constituere sunt censendi”) (Euler, 1948, 

p. 91). 

Here we find, possibly for the first time, the application of 

the ideas of geometrical dimension and dimensional 

homogeneity to mechanical quantities and mechanical laws, 

although in a way completely different from Fourier’s, for 

instance. Although there is no reference to Euler in the Turin 

paper, it is possible that its author was familiar at least with 

some of Euler’s work, as will be seen below. But even if Euler’s 

use of dimensions in mechanics were known to the author of the 

Turin paper, he could not be using those ideas in his derivation, 

since they are not compatible with assumptions TP3 and TP4. 

For Euler, as has been shown, forces are always to be divided 

by the weight of the body, and hence to be considered as 

quantities of null dimension; and if we accept this, no 

dimensional requirement can be applied to the equation of 

composition of forces, and nothing can be concluded from the 

relation z = funct. (a,). 

Notice also that in his derivation of the lever law, the author 

must assume that forces and lengths have different dimensions, 

and that it is not possible to produce a non-dimensional quantity 

from forces and distances; he is therefore assuming that forces 

are not geometrical entities, and that they do not have purely 

geometrical dimensions. Since, in that derivation, he again takes 

the force out of the function, he cannot assume that forces have 

null dimension. This is only compatible with the idea of 

different kinds of dimensionality – an idea that we do not find 

in Euler. 
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The ideas about the dimensions of physical magnitudes used 

in the Turin paper were therefore new and at variance with the 

conceptions of that time. But the author probably did not realize 

this, since he neither states that his ideas are new, nor elucidates 

his concept of the dimensions of physical magnitudes.  

5. THE AUTHORSHIP OF THE TURIN PAPER 

Let us now explain why up to this point we are mentioning 

“the Turin paper”, instead of referring to Foncenex, its putative 

author. The reason is this: it seems that at least the ideas of that 

article are due to Lagrange. Let us see the relevant evidence. 

Lagrange was born in Turin, in 1736, and at the age of 19 or 

16 he began his teaching career in that same city, at an artillery 

academy (Delambre, 1867, vol. 1, p. ix). Foncenex was one of 

his students, there. At this time, Lagrange had already been 

influenced by Euler (Genocchi, 1883). 

In 1757, at the age of 21, Lagrange joined Count Saluzzo di 

Menusiglio and Giuseppe Cigna to create the Academy of 

Sciences of Turin (Gorresio, 1883). In 1759 this Academy 

published its first volume of memoirs, called Miscellanea 

philosophico-mathematica societatis privatae Taurinensis. This 

volume contained an article on imaginary and complex numbers 

signed by François Daviet de Foncenex, with a note by 

Lagrange (Foncenex, 1759). This shows the close association 

betweem them at that time. That was Foncenex’ first paper.  

Lagrange sent this first volume to outstanding scientists and 

mathematicians, including d’Alembert. The later, in reply, sent 

to Lagrange the four first parts of his Opuscules mathématiques 

(d’Alembert, 1761-1780). In the first one, d’Alembert presented 

his demonstration of the parallelogram rule which was cited 

above. This may have been the stimulus for the composition of 

the Turin paper.  

In the very first letter from d’Alembert to Lagrange, with the 

date of September 27, 1759, we find a reference to Foncenex 

(Lagrange, 1867-1892, vol. 13, pp. 3-4). 
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In 1759 and 1760, six new members joined the Turin 

Academy; among them we find Daviet de Foncenex (Gorresio, 

1883). In 1761 the second volume of memoirs was published, 

now under the noble name of Mélanges de philosophie et 

mathématique de la Societé Royale de Turin. Here appeared the 

paper on the fundamental principles of mechanics “par 

Monsieur le Chevalier Daviet de Foncenex”.  

It is possible that Lagrange has shown to Foncenex 

d’Alembert’s work on the law of force composition, and that he 

discussed those ideas with him. It is also possible that he has 

suggested to Foncenex the main ideas of the paper, and 

stimulated his pupil to write the article, while he was himself 

busy with his researches on the theory of sound. This very bulky 

study was published at the same time as Foncenex’s paper 

(Lagrange, 1760-1761). 

Delambre states that, according to Lagrange himself, “he 

provided Foncenex with the analytical part of his Memoirs, 

leaving to him the care of developing the arguments about the 

formulas” (Delambre, 1867, p. xi). Genocchi states that 

Foncenex’s paper on the principles of mechanics “is said to have 

been made by Lagrange or with his help” (Genocchi, 1883, p. 

86; Genocchi, 1869). There must be some truth behind those 

rumours. It is remarkable that in his Mécanique analytique 

Lagrange refers to the Turin paper, but he does not cite 

Foncenex by name: “See the second volume of the Mélanges de 

la Société de Turin” (Lagrange, 1867-1892, vol. 11, p. 19). Let 

us also notice that other later authors do also refer to the paper 

without telling the author’s name (Legendre, 1794; Fourier, 

1888-1890, vol. 2, pp. 475-521; Laplace, 1878-1912, vol. 8, pp. 

69-197). Was this because everyone knew that Foncenex was 

not the author? Maybe Lagrange did not mention Foncenex 

because the real author of the paper was himself. That is not 

conclusive evidence, however, since at this same place 

Lagrange criticized the demonstration of the principle of force 

composition presented in the Turin paper, and does not use it in 

his own book.  
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Let us add some information about Foncenex (Anonymous, 

1857-1866; Anonymous, 1843-1847). François Daviet de 

Foncenex was born at Thonon, in 1734, being therefore two 

years older than Lagrange. His only relevant scientific papers 

were those cited above, published bu the Turin Academy. 

Shortly after the publication of the paper on the foundations of 

mechanics, and through Lagrange’s influence, he was placed by 

the king of Sardaigne at the head of his Navy; in 1766, Lagrange 

told d’Alembert that Foncenex was at the sea. Afterwards he 

became governor of Sassai and Villefranche. In 1789, he 

published his third and last known scientific contribution: a 

description of an upwards thunderbolt rising from the 

Villefranche beacon. In 1792, he was accused of weakness or 

treason because he did not duly defend Nice, and he was arrested 

for one year. In 1799, the year of his death at Casals, an edition 

in book form of his work on the principles of mechanics was 

published in Turin. One of the biographical notes states that he 

left several manuscripts on algebra and geometry, but nothing is 

known about their content (Anonymous, 1857-1866). 

6. THE INFLUENCE OF THE TURIN PAPER 

The Turin paper did not produce any considerable immediate 

impact. Three papers, by d’Alembert, Laplace, and Fourier, 

have referred to it and corrected an analytical mistake of the 

article. Once the error is corrected, it is seen that the derivation 

of the paper does not conduce to the usual law of the lever 

(Bonola, 1955, pp. 181-199; Fourier, 1888-1890, vol. 2, pp. 

475-521; Laplace, 1878-1912, vol. 8, pp. 69-197). It is quite 

interesting to notice that the law of force composition is now 

known to hold in any kind of geometry – since it is a differential 

law. But the lever law, which refers to an extended body, 

assumes different forms in different geometries. The corrected 

derivation of the lever law of the Turin paper is compatible with 

non-Euclidian geometries – a result later studied by Angelo 

Genocchi (1869a; 1869b; 1878). But it was only one century 

after the publication of the Turin paper that non-Euclidian 
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mechanics was developed and studied by de Tilly, Mansion, 

Andrade, and others (see Bonola, 1955, pp. 181-199; Grigorian, 

1960). Those developments, not directly linked to our subject, 

will not be described here. 

Fourier’s article is a proof that this author did know the Turin 

paper before he wrote his Théorie analytique de la chaleur, 

where he presented his considerations on dimentions of physical 

magnitudes. Therefore, it is possible that the Turin paper has 

influenced Fourier’s later work on the dimensions of physical 

magnitudes and the homogeneity of physical laws.  

The Turin paper was read by Legendre, and has motivated 

his work on dimensional analysis. This important development 

will be dealt in our next article.11 

Within classical mechanics, the dimensional method used in 

the Turin paper did not become influential. The only direct 

effect that I have been able to find is the reproduction of the 

derivation of the composition of forces in the second edition of 

Poisson’s Traité de mécanique (Poisson, 1833).12 We shall 

present a detailed study of this case, since it illustrates how 

difficult it was to combine the assumptions of the Turin paper 

with the concepts of that period. 

Contrasting with the Turin paper, Poisson takes the care of 

explicitly describing the principle of dimensional homogeneity, 

before using it. It is interesting to remark that Foncenex did not 

use the word ‘homogeneity’, and that Poisson uses it, while 

avoiding to refer to the ‘dimension’ of mechanical magnitudes. 

Let us quote Poisson: 

 
The equations that we shall consider will contain abstract 

numbers, such as the number , logarithms, trigonometric 

lines, etc; they will also contain other quantities of several 

natures, that will also be represented by numbers expressing 

their ratios to arbitrarily chosen units, granted that each unit 

 
11 See the next paper of this volume. 
12 The first editon of Poisson’s treatise (Poisson, 1811) does not 

contain a corresponding passage. 



Foncenex and the composition of forces 

 

29 

will be the same for every quantity of the same kind. 

Changing the magnitude of one or several units, the numbers 

that express the corresponding quantities will vary inversely 

as that magnitude, and, notwithstanding this completely 

arbitrary change, the equations that contain them must still 

hold. It is necessary, for this to happen, that their forms obey 

certain conditions, easy to verify in each particular case, and 

that are called, in the most general acception, the conditions 

of homogeneity of the quantities. Any equation that does not 

satisfy them, will be wrong for this reason, and must be 

rejected. (Poisson, 1833, vol. 1, p. 39) 

 

As will become clear in the following quotation, Poisson 

regarded each unit as independent of the others, except in the 

case of the units of length, area, and volume. He did not try to 

reduce all magnitudes to a set of a few fundamental units, as 

Fourier did; this takes from his method all its practical value, 

and produces consequences that clash with modern dimensional 

analysis. 

 
Thus, representing by F a given function, let us suppose 

that we have  

F(f,f’,...L,L’,...m,m’,...t,t’,...) = 0;   (a) 

f, f’,... being forces, L, L’,... lines, m, m’,... masses, t, t’,... 

times. If we represent by n, n’, n”, n”‘ several abstract 

numbers, and if we reduce at the same time the unit of force 

in the ratio of one to n, the linear unit in the ratio or one to n’, 

the unit of mass in the ratio of one to n”, the unit of time in 

the ratio of one to n”’, the numbers f, f’,... L, L’,... m, m’,... t, 

t’,... will become nf, nf’,... n’L, n’L’,... n”m, n”m’,... n”’t, n”’ 

t’,..., and the equation (a) must still be valid, that is, one must 

still have 

F(nf,nf’,...n’L,n’L’,...n”m,n”m’,... n”’t, n”’t’,...) = 0, 

whatever may be n, n’, n”, n’’’. If the equation included 

surfaces s, s’,... and volumes v, v’,... , their dimensions should 

be reported to the same unit as the lines L, L’,... and those 

quantities s, s’,... v, v’,... would consequently become n’²s, 

n’²s’,... n’³v, n’³v’, ... by the modification of this unit. 

(Poisson, 1833, vol. 1, pp. 39-40) 
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Here, Poisson explicitly referred to the relation between the 

units of length, area, and volume, and fails to mention other 

relations, such as that between velocity and length. Since he says 

that the equation must hold “whatever may be n, n’, n”, n’’’,” 

this implies that the units of force, length, mass, and time, could 

be arbitrariyly and independently changed without affecting the 

equation. This does not correspond to our current notion.  

Poisson presented an instance of his principle, showing that 

a particular equation formerly presented in his book did satisfy 

the homogeneity principle. However, the formula he tested only 

contained geometrical quantities. He next proposes a new rule: 

 
It is impossible that the equation (a) may contain a single 

quantity of some kind alone; when it contains two – for 

instance, two forces f and f’ – and we solve [the equation] 

relative to one of them, obtaining 

f’ = F(f,L,L’,...m,m’,...t,t’,...), 

it is necessary, by the homogeneity of the quantities, that f  be 

a factor of all the terms of the new function F, or, said 

otherwise, it is required that we have: 

f’ = Nf; 

N being a factor that will contain no quantity of the nature of 

f and f’, and will not vary with the unit of force. (Poisson, 

1833, vol. 1, p. 41) 

 

Notice that, if Poisson’s principle of homogeneity was 

correct, then any formula such as 

F = m.a = m.d²x/dt² 

would be deemed wrong, since it contains only one quantity of 

each kind. Poisson uses equations such as this, in his book, but 

he did not discuss this problem. Actually, in the main text of his 

book, we may find one single use of his principle of 

homogeneity: in the derivation of the parallelogram rule. The 

demonstration follows the general lines of the Turin paper, and 

is probably derived from it, although Poisson did not refer to it. 
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Let us reproduce the relevant part of the argument, in order to 

compare it to the proof in the Turin paper. 

 
The resultant of two equal forces always cuts into two 

equal parts the angle comprised between their directions; 

because there would be no reason for it approaching more one 

of these two forces, or for its direction to leave their plane 

more to one side than the other; its direction is therefore 

known, and we need only to determine its magnitude. 

 To find it, let MA and MB be the directions of the 

components, their common value being represented by P. Let 

also 2x be the angle AMB, and MD the direction of the 

resultant, in such a way that AMD = BMD = x. Its intensity  

cannot depend but on the quantities P and x; representing it 

by R, we shall have 

R = f(P,x). 

In this equation, R and P are the only quantities whose 

numerical expression varies with the unit of force; according 

to the principle of homogeneity of quantities, it is therefore 

required that the function f(P,x) takes the form Px. Thus we 

have 

 R = Px; 

and the question is reduced to the determination of the form 

of the function x. (Poisson, 1833, vol. 1, pp. 45-46) 

 

Notice that Poisson did not use the assumption that angles 

have null dimension. Let us explicitly state his assumptions, in 

order to show how different they are from those of the Turin 

paper: 

 

SDP1 – The units of each kind of mechanical quantity are 

arbitrary and independent of other units. 

 

SDP2 – The equations of mechanics must remain valid if we 

multiply each kind of quantity appearing in them by arbitrarily 

chosen numbers (remarking, however, that the geometrical 

quantities are not independent of one another). 

 



Roberto de Andrade Martins 

 

32 

SDP3 – An equation cannot contain one single mechanical 

quantity of some kind; and when it contains only two, they will 

necessarily be proportional to one another. 

 

In the specific instance of the derivation of the parallelogram 

law, Poisson arrives to the same result as the Turin paper, but 

their premises are completely different. Notice that the 

assumptions of the Turin paper are compatible with modern 

dimensional analysis, and those of Poisson are not. But at that 

time, Poisson’s ideas were much more natural and acceptable 

than those of the Turin paper.  

It seems that Poisson did not pay much attention to the 

consequences of his principles. It is likely that his only 

motivation was to provide a justification for the proof of the law 

of composition of forces. 

7. CONCLUDING REMARKS 

Since our main theme, dimensional analysis, was historically 

linked to the search for a proof of the law of composition of 

forces, let us briefly refer to the later phases of this subject. 

In 1875 – a hundred and four years after the publication of 

the Turin paper – Darboux, while proposing a new 

demonstration of the law of force composition, presented a brief 

review of former works on the subject, and remarked: “Today, 

we seldom find a scientific journal where we do not find at least 

one demonstration of the parallelogram law” (Darboux, 1875; 

see also Aimé, 1836). Why did so many people attempt to find 

the proof of this law? Perhaps because it looked like a 

geometrical theorem (not like a physical law) and so one was 

tempted to derive it from a priori notions. Even in the 20th 

century 1941 we may find Birkhoff presenting a new derivation 

of this law, and emphasizing that its main ingredient is the a 

priori principle of sufficient reason (Birkhoff, 1941). 
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There was some difference between the attitudes of British 

and French authors regarding this subject.13 While in France 

there was a wide acceptance of the possibility of providing a 

priori demonstrations of the laws of mechanics, British 

scientists usually regarded the laws of mechanics as empirical 

truths, and did not pay so much attention to those attempts of 

demonstration. In the early 19th century, Whewell presents a 

very modern and lucid discussion of the epistemological status 

of the laws of motion, showing that their general and abstract 

forms are indeed a priori truths; but that the particular 

formulations that render them applicable to the reality are 

empirical and a posteriori (Whewell, 1834). The specific 

relation between mechanics and geometry, and the conditions 

that allow us to produce an apparently geometrical derivation of 

the law of force composition are clearly and correctly discussed 

by Goodwin and de Morgan, some time later (Goodwin, 1847; 

Morgan, 1864). Let us remark that de Morgan uses a 

dimensional argument in his article. 

The empirical approach to mechanics of British scientist, 

perhaps a legacy of Newton’s misunderstood hypotheses non 

fingo (Bell, 1942), was not a fertile ground for the creation and 

development of methods that proposed to provide an a priori 

proof of the basic principles of mechanics. The French science 

of the 18th and early 19th centuries, however, deeply influenced 

by Descartes’ rationalism, was probably the best field for the 

search of such methods – and this allowed the creation of 

dimensional analysis. 

As we have seen, however, although the motivation for the 

creation of dimensional analysis was strong and clear, it did not 

have a good conceptual support, at the time of publication of the 

Turin paper. The attempt was premature and was not grounded 

 
13 One may consult some interesting British accounts of the 

differences between French and British science – and other cultural 

differences: Anonymous, 1820; Anonymous, 1821; Anonymous, 

1821-1822.  
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on firm foundations. It made use of ideas in disaccord with those 

common at the time, and it was probably for that reason that the 

method was later wrongly stated by Poisson. 

The most important and direct influence of the Turin paper 

was to stimulate Legendre’s work on dimensional analysis; this 

subject will be dealt with in our following paper. 
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l’étude des systèmes de mesures usités en physique. Paris: 

Gauthier-Villars et fils, 1991. 



Roberto de Andrade Martins 

 

40 

POISSON, Siméon Denis. Traité de mécanique. 2 vols. Paris: 

Courcier, 1811. 

POISSON, Siméon Denis. Traité de mécanique. 2nd. edition. 2 

vols. Paris: Bachelier, 1833. 

RAVETZ, Jerome. The representation of physical quantities in 

18th century mathematical physics’, Isis, 52: 7-20, 1961. 

RIABOUCHINSKY, Dimitri Pavlovitch. Méthode des 

variables de dimension zéro et son application en 

aérodynamique. Aérophyle, 1: 407-408, Sept. 1911. 

ROSENFELD, Boris Abramovich; ČERNOVA, M. L. 

Algebraic exponents and their geometric interpretation. 

Organon, 4: 109-112, 1967. 

SÉDOV, Leonid Ivanovich. Similitude et dimensions en 

mécanique. Moscou: MIR, 1977. 

WHEWELL, William. On the nature of the truth of the laws of 

motion. Transactions of the Cambridge Philosophical 

Society, 5: 149-172, 1834. 

 



Scientiarum Historia et Theoria Studia, volume 1 

 

Roberto de Andrade Martins 

 

Studies in History and  

Philosophy of Science I 
 

Extrema: Quamcumque Editum, 2021 

Summary 

Foreword ............................................................................................1 

The early history of dimensional analysis: I. Foncenex and the 

composition of forces .........................................................................5 

The early history of dimensional analysis: II. Legendre and the 

postulate of parallels .........................................................................41 

Experimental studies on mass and gravitation in the early twentieth 

century: the search for non-Newtonian effects .................................77 

The search for an influence of temperature on gravitation .............105 

Philosophy in the physics laboratory: measurement theory versus 

operationalism ................................................................................137 

 

Paperback edition: ISBN 978-65-996890-1-7  

Kindle edition: ISBN 978-65-996890-0-0  

 

Available at: 

https://www.amazon.com/dp/6599689019  

https://www.amazon.com/dp/6599689019

